Cytotoxicity of thermosensitive polymers poly(N-isopropylacrylamide), poly(N-vinylcaprolactam) and amphiphilically modified poly(N-vinylcaprolactam).

Biomaterials

Division of Pharmaceutical Technology, Viikki Drug Discovery Technology Center, Faculty of Pharmacy, University of Helsinki, PB 56, FIN-00014 Helsinki, Finland.

Published: June 2005

Thermosensitive polymers poly(N-isopropylacrylamide) (PNIPAM), poly(N-vinylcaprolactam) (PVCL) and PVCL grafted with amphiphilic poly(ethylene oxide) (PEO) chains (PVCL-graft-C11EO42) were prepared and characterized and their putative cytotoxicity was evaluated. The cytotoxicity of these thermosensitive polymers and their monomers was investigated as a function of polymer concentration, incubation time and incubation temperature by using 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) and lactate dehydrogenase (LDH) cytotoxicity tests in Caco-2 and Calu-3 cell cultures. Also, the influence of the chain end functionality on toxicity was examined. Viability (MTT) and cellular damage (LDH) of the cells were shown to be dependent on the surface properties of the polymers, hydrophilicity or hydrophobicity. Hydrophilic PVCL and PVCL-graft-C11EO42 were well tolerated at all polymer concentrations (0.1-10.0 mg/ml) after 3 h of incubation at room temperature and at physiological temperature (37 degrees C). The more hydrophobic PNIPAM induced more clear cellular cytotoxicity at 37 degrees C. The monomers N-isopropylacrylamide and vinylcaprolactam and PEO-macromonomer showed dramatically higher cytotoxicity values with respect to the corresponding polymers. Cell damage was directly dependent on concentration, temperature and incubation time.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.biomaterials.2004.09.008DOI Listing

Publication Analysis

Top Keywords

thermosensitive polymers
12
cytotoxicity thermosensitive
8
polymers polyn-isopropylacrylamide
8
incubation time
8
cytotoxicity
6
polymers
5
polyn-isopropylacrylamide polyn-vinylcaprolactam
4
polyn-vinylcaprolactam amphiphilically
4
amphiphilically modified
4
modified polyn-vinylcaprolactam
4

Similar Publications

Protection of Enzymes Against Heat Inactivation by Enzyme-Polymer Conjugates.

Macromol Rapid Commun

January 2025

State Key Lab of Polymer Materials Engineering, School of Chemical Engineering, Sichuan University, Chengdu, 610065, China.

Along with the quick advancements in enzyme technology, inactivation has emerged as the key barrier for enzymes to be fully utilized as biocatalysts. Here, a novel strategy is presented for the preservation of the enzymatic activity even after heat treatment by grafting enzymes onto the thermal responsive block copolymer via an activated ester-amine reaction. A new water-soluble activated ester monomer, acrylic polyethylene glycol (PEG) functionalized 3-fluoro-4-hydroxybenzoate is synthesized.

View Article and Find Full Text PDF

A Lu-nucleotide coordination polymer-incorporated thermosensitive hydrogel with anti-inflammatory and chondroprotective capabilities for osteoarthritis treatment.

Biomaterials

January 2025

Department of Nuclear Medicine, Xiangya Hospital, Central South University, No. 87 Xiangya Road, Changsha, Hunan, 410008, China; Key Laboratory of Biological Nanotechnology, NHC, No. 87 Xiangya Road, Changsha, Hunan, 410008, China. Electronic address:

Osteoarthritis (OA) is a prevalent and debilitating condition characterized by cartilage destruction and inflammation. Traditional pharmacotherapies for OA are limited by their short-term efficacy and systemic side effects. Radiosynoviorthesis (RSO), involving intra-articular injection of radiopharmaceuticals, has shown promise for OA treatment but is hindered by the toxicity and rapid clearance of radioisotopes.

View Article and Find Full Text PDF

The synthesis of poly(N-isopropyl acrylamide) (pNIPA)-based polymers via the surfactant-free precipitation polymerization (SFPP) method produced thermosensitive nanospheres with a range of distinctive physicochemical properties. Nano- and microparticles were generated using various initiators, significantly influencing particle characteristics, including the hydrodynamic diameter (D), which varied from 87.7 nm to 1618.

View Article and Find Full Text PDF

Background: Regenerative endodontics requires an innovative delivery system to release antibiotics/growth factors in a sequential trend. This study focuses on developing/characterizing a thermoresponsive core-shell hydrogel designed for targeted drug delivery in endodontics.

Methods: The core-shell chitosan-alginate microparticles were prepared by electrospraying to deliver bone morphogenic protein-2 for 14 days and transforming growth factor-beta 1 (TGF-β1) for 7-14 days.

View Article and Find Full Text PDF

We report on 3D-printable polymer networks based on the combination of modified alginate-based polymer blends; two alginate polymers were prepared, namely, a thermoresponsive polymer grafted with P(NIPAM--NtBAM)-NH copolymer chains and a second polymer modified with diol/pH-sensitive 3-aminophenylboronic acid. The gelation properties were determined by the hydrophobic association of the thermosensitive chains and the formation of boronate esters. At a mixing ratio of 70/30 wt % of the thermo/diol-responsive polymers, the semi-interpenetrating network exhibited an optimum storage modulus ranging from ca.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!