Background: Urethral reconstruction for both congenital and acquired etiologies remains a challenge for most urologic surgeons. Tissue engineering has been proposed as a strategy for urethral reconstruction. The purpose of this study was to determine whether a naturally derived extracellular matrix substitute developed for urethral reconstruction would be suitable for urethral repair in an animal model.
Methods: A urethral segmental defect was created in 20 male rabbits. The urethral extracellular matrix, obtained and processed from rabbit urethral tissue, was trimmed and transplanted to repair the urethral defect. Then, the regenerated segment was studied histologically by haematoxylin-eosin staining and Van Gieson staining at 10 days, 3 weeks, 6 weeks, and 24 weeks postoperation. Retrograde urethrography was used to evaluate the function of the regenerated urethras of 4 rabbits 10 and 24 weeks after the operation. The urodynamics of 4 rabbits from the experimental group and control group I were assessed and compared. In addition, 4 experimental group rabbits were examined by a urethroscope 24 weeks after the operation.
Results: At 10 days after operation, epithelial cells had migrated from each side, and small vessels were observed in the extracellular matrix. The matrix and adjacent areas of the host tissue were infiltrated with inflammatory cells. The epithelium covered the extracellular matrix fully at 3 weeks postoperation. Well-formed smooth-muscle cells were first confirmed after 6 weeks, at which point the inflammatory cells had disappeared. At 24 weeks postoperation, the regenerated tissue was equivalent to the normal urethra. Urethrography and urodynamic evaluations showed that there was no difference between normal tissue and regenerated tissue.
Conclusions: Urethral extracellular matrix appears to be a useful material for urethral repair in rabbits. The matrix can be processed easily and has good characteristics for tissue handling and urethral function.
Download full-text PDF |
Source |
---|
J Orthop Surg Res
January 2025
Monash Suzhou Research Institute, Monash University, Suzhou, 215000, Jiangsu, China.
Backgrounds: Osteoarthritis (OA) significantly impacts the elderly, leading to disability and decreased quality of life. While hyaluronic acid (HA) and chondroitin sulfate (CS) are recognized for their therapeutic potential in OA, their effects on extracellular matrix (ECM) degradation are not well understood. This study investigates the impact of HA and CS, individually and combined, on ECM degradation in OA and the underlying mechanisms.
View Article and Find Full Text PDFCell Biol Toxicol
January 2025
Department of Emergency, The First Hospital of China Medical University, No.155 Nanjing Road, Heping District, Shenyang, 110001, Liaoning Province, P. R. China.
In this study, we identified cancer-associated fibroblast (CAF) molecular subtypes and developed a CAF-based prognostic model for breast cancer (BRCA). The heterogeneity of cancer-associated fibroblasts (CAFs) and their significant involvement in the advancement of BRCA were discovered employing single-cell RNA sequencing. Notably, we discovered that the RUNX1/SDC1 axis enhances BRCA cell invasion and metastasis.
View Article and Find Full Text PDFAnal Chem
January 2025
Molecular and Cellular Biology Graduate Program, University of Massachusetts, Amherst, Massachusetts 01003, United States.
Matrix-assisted laser desorption ionization mass spectrometry imaging (MALDI-MSI) has been used to generate spatial maps of lipids, metabolites, peptides, proteins, and glycans in tissues; however, its use for mapping extracellular matrix (ECM) protein distributions is underexplored. ECM proteins play a major role in various pathological conditions, and changes in their spatial distributions affect the function and morphology of cells within tissues. ECM protein detection is challenging because they are large, insoluble, and undergo various post-translational modifications, such as glycosylation.
View Article and Find Full Text PDFJ Neurosci
January 2025
Institute of Neuroimmunology, Slovak Academy of Science, 84510 Bratislava, Slovakia.
Extracellular matrix (ECM) is a network of macromolecules which has two forms - perineuronal nets (PNNs) and a diffuse ECM (dECM) - both influence brain development, synapse formation, neuroplasticity, CNS injury and progression of neurodegenerative diseases. ECM remodeling can influence extrasynaptic transmission, mediated by diffusion of neuroactive substances in the extracellular space (ECS). In this study we analyzed how disrupted PNNs and dECM influence brain diffusibility.
View Article and Find Full Text PDFBiomed Mater
January 2025
Department of Orthopaedic Surgery, University of Connecticut, Chemical, Materials & Biomolecular Engineering MC-3711, ARB7-E7018, 263 Farmington Avenue, Farmington, CT 06032, USA, Storrs, Connecticut, 06269, UNITED STATES.
Articular cartilage and osteochondral defect repair and regeneration presents significant challenges to the field of tissue engineering (TE). TE and regenerative medicine strategies utilizing natural and synthetic-based engineered scaffolds have shown potential for repair, however, they face limitations in replicating the intricate native microenvironment and structure to achieve optimal regenerative capacity and functional recovery. Herein, we report the development of a cartilage extracellular matrix (ECM) as a printable biomaterial for tissue regeneration.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!