Chemokines, signaling through the CCR2 receptor, are highly expressed in injured skeletal muscle. Their target specificity depends on the cellular expression of the specific receptors. Here we demonstrate that, in freeze-injured muscle, CCR2 co-localized with Mac-3, a marker of activated macrophages as well as with myogenin, a marker of activated muscle precursor cells. The degeneration/regeneration process in skeletal muscle of CCR2-/- and wild-type mice was not significantly different at day 3. However in contrast to the regenerated muscle of the wild-type mice, the muscle from CCR2-/- mice was characterized by impaired regeneration, inflammation, and fibrotic response at day 14, increased fat infiltration, fibrosis, and calcification at day 21, and impaired strength recovery until at least 28 days post-injury. Consistently, the increased expression of Mac-1 and TNF-alpha was prolonged in the injured muscle of CCR2-/- mice. The expression pattern of the myogenic factors MyoD and myogenin was similar for both types of mice, while NCAM, which is associated with the initiation of fusion of muscle precursor cells, was more increased in the injured muscle of CCR2-/- mice. In conclusion, the study delineates that signaling through CCR2 is involved in muscle precursor cell activities necessary for complete and rapid regeneration of injured skeletal muscle.

Download full-text PDF

Source
http://dx.doi.org/10.1096/fj.04-2421fjeDOI Listing

Publication Analysis

Top Keywords

skeletal muscle
16
muscle ccr2-/-
16
muscle
12
muscle precursor
12
ccr2-/- mice
12
signaling ccr2
8
injured skeletal
8
marker activated
8
precursor cells
8
wild-type mice
8

Similar Publications

Unlabelled: Cancer cachexia, a multifactorial condition resulting in muscle and adipose tissue wasting, reduces the quality of life of many people with cancer. Despite decades of research, therapeutic options for cancer cachexia remain limited. Cachexia is highly prevalent in people with pancreatic ductal adenocarcinoma (PDAC), and many animal models of pancreatic cancer are used to understand mechanisms underlying cachexia.

View Article and Find Full Text PDF

Skeletal muscle regeneration in adults is predominantly driven by satellite cells. Loss of satellite cell pool and function leads to skeletal muscle wasting in many conditions and disease states. Here, we demonstrate that the levels of fibroblast growth factor-inducible 14 (Fn14) are increased in satellite cells after muscle injury.

View Article and Find Full Text PDF

Late Presentation of McArdle's Disease Mimicking Polymyalgia Rheumatica: A Case Report and Review of the Literature.

Case Rep Rheumatol

January 2025

Department of Rheumatology, Royal Wolverhampton NHS Trust, Wolverhampton, UK.

McArdle disease or glycogen storage disease Type V is a genetic condition caused by PYGM gene mutations leading to exercise intolerance and fatigability. The condition most commonly presents in childhood. In rare cases, patients have presented with late-onset McArdle disease.

View Article and Find Full Text PDF

Histological techniques to study muscle are crucial for assessing skeletal muscle health. To preserve tissue morphology, samples are usually fixed in formaldehyde or cryopreserved immediately after excision from the body. Freezing samples in liquid nitrogen, using isopentane as a mediator for efficient cooling, preserves the tissue in its natural state.

View Article and Find Full Text PDF

Clinical significance of cachexia index determined by bioelectrical impedance analysis in patients with gastrointestinal cancer.

Oncol Lett

March 2025

Department of Molecular Gastroenterology and Hepatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Kansai 602-8566, Japan.

Cancer cachexia is a complex disorder characterized by skeletal muscle loss, which may influence the prognosis of patients with cancer. The cachexia index (CXI) is a new index for cachexia. The present study aimed to assess whether the CXI determined by bioelectrical impedance analysis (BIA) is valuable for predicting survival in patients with gastrointestinal cancer.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!