Sunscreens reduce the deleterious effects of ultraviolet radiation (UVR) by absorbing, reflecting, or scattering photons. Ultraviolet radiation includes UVB, which is primarily responsible for sunburn and skin cancers, as well as UVA, which has been implicated in photoaging. Topical photoprotective agents include physical and chemical sunscreens. Physical sunscreens are important in individuals who are unusually sensitive to UVA and visible light such as those with photosensitizing diseases. Chemical sunscreens are more cosmetically appealing and can selectively absorb UVB and/or UVA. The increased awareness of the importance of sun protection has encouraged the regular use of sunscreens. This article will review physical and chemical sunscreens. The properties and vehicle design of various sunscreen formulations are also discussed.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/j.1524-4725.1992.tb03677.x | DOI Listing |
Food Res Int
February 2025
Ghent University, Department of Applied Physics, Research Unit Plasma Technology (RUPT), Belgium.
Recently, interest in eco-friendly techniques for producing antibacterial food packaging films has surged. Within this context, plasma polymerization is emerging as a promising approach for applying degradable antibacterial coatings on various plastic films. This research therefore employs an atmospheric pressure aerosol-assisted plasma deposition technique to create polyethylene glycol (PEG)-like coatings embedding zinc oxide nanoparticles (ZnO NPs) of varying sizes on polyethylene (PE) substrates.
View Article and Find Full Text PDFPLoS One
January 2025
Department of Crop and Soil Sciences, College of Agricultural and Environmental Sciences, University of Georgia, Griffin, Georgia, United States of America.
Previous studies have indicated the great performance of electrooxidation (EO) to mineralize per- and polyfluoroalkyl substances (PFASs) in water, but different anions presented in wastewater may affect the implementation of EO treatment in field applications. This study invetigated EO treatment of perfluorooctane sulfonate (PFOS) and perfluorooctanoic acid (PFOA), two representative perfluoroalkyl acids (PFAAs), using porous Magnéli phase titanium suboxide anodes in electrolyte solutions with different anions present, including NO3-, SO42-, CO32- and PO43-. The experiment results indicate that CO32- enhanced PFAS degradation, while NO3- suppressed the degradation reactions with its concentration higher than 10 mM.
View Article and Find Full Text PDFEnviron Sci Technol
January 2025
Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), Dalian Key Laboratory on Chemicals Risk Control and Pollution Prevention Technology, School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China.
Chemicals in plastics raise significant concerns for potential adverse environmental and health impacts. However, dissipation kinetics and fluxes of chemicals from outdoor plastic products remain largely uncharacterized, hindering the accurate assessment of their environmental exposure. This study quantified outdoor dissipation profiles for 20 "priority" chemicals, including sunscreens (benzophenone, benzophenone-3, octyl salicylate, etc.
View Article and Find Full Text PDFBull Environ Contam Toxicol
January 2025
Division of Environmental Science and Ecological Engineering, Korea University, Seoul, 02841, Republic of Korea.
The adverse effect of chemical additives leaching from microplastics (MPs) on Daphnia magna populations is not fully understood. In this study, D. magna populations were exposed to polyethylene (PE) MP fragments (5.
View Article and Find Full Text PDFInt J Nanomedicine
January 2025
Key Laboratory of Livestock Infectious Diseases, Ministry of Education, and Key Laboratory of Ruminant Infectious Disease Prevention and Control (East), Ministry of Agriculture and Rural Affairs, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, 110866, People's Republic of China.
Background: Antibiotic resistance of many bacteria, including Methicillin-resistant (MRSA), has become a major threat to global health. Zinc Oxide Quantum dots (ZnO-QDs) show good antibacterial activity, but most of them are insoluble in water, limiting their application range, and there is a lack of research on drug resistance inducement.
Methods: The water-soluble zinc oxide quantum dots modified by APTES (ZnO@APTES QDs) were prepared by a microwave assisted synthesis.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!