Warped unification, proton stability, and dark matter.

Phys Rev Lett

Department of Physics and Astronomy, Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218-2686, USA.

Published: December 2004

AI Article Synopsis

  • Solving baryon-number violation in nonsupersymmetric grand unified theories (GUTs) in warped higher-dimensional spacetime may lead to the discovery of a stable Kaluza-Klein particle that shares properties with right-handed neutrinos but has a fractional baryon number.
  • This particle is related to the top quark and remains stable due to a combination of baryon number and SU(3) color, with potential masses ranging from 10 GeV to a few TeV.
  • Future dark matter direct detection experiments are expected to test the entire parameter space of these models, and other exotic GUT partners of the top quark could be produced at high-energy colliders, showing distinct signatures.

Article Abstract

We show that solving the problem of baryon-number violation in nonsupersymmetric grand unified theories (GUT's) in warped higher-dimensional spacetime can lead to a stable Kaluza-Klein particle. This exotic particle has gauge quantum numbers of a right-handed neutrino, but carries fractional baryon number and is related to the top quark within the higher-dimensional GUT. A combination of baryon number and SU(3) color ensures its stability. Its relic density can easily be of the right value for masses in the 10 GeV-few TeV range. An exciting aspect of these models is that the entire parameter space will be tested at near future dark matter direct detection experiments. Other exotic GUT partners of the top quark are also light and can be produced at high energy colliders with distinctive signatures.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevLett.93.231805DOI Listing

Publication Analysis

Top Keywords

dark matter
8
baryon number
8
top quark
8
warped unification
4
unification proton
4
proton stability
4
stability dark
4
matter solving
4
solving problem
4
problem baryon-number
4

Similar Publications

The corpus callosum, a major white matter region central to cognitive function, is vulnerable to aging. Using zeitgeber time (ZT) aligned with environmental light/dark cycles, we investigated temporal gene expression patterns in the corpus callosum of young (5-month-old) and aged (24-month-old) mice using RNA-seq. Comparative analysis revealed more differentially expressed genes across ZT pairs in young mice than aged mice.

View Article and Find Full Text PDF

The Dark Triad (DT), encompassing narcissism, Machiavellianism and psychopathy traits, poses significant societal challenges. Understanding the neural underpinnings of these traits is crucial for developing effective interventions and preventive strategies. Our study aimed to unveil the neural substrates of the DT by examining brain scans from 201 individuals (mean age: 32.

View Article and Find Full Text PDF

Microbial community structure and water quality performance in local scrubber reclaim system for water reclamation of the semiconductor industry: a case study of a semiconductor plant in Beijing.

Environ Res

January 2025

Environmental Simulation and Pollution Control State Key Joint Laboratory, Key Laboratory of Microorganism Application and Risk Control of the Ministry of Ecology and Environment, School of Environment, Tsinghua University, Beijing, 100084, PR China; Beijing Laboratory for Environmental Frontier Technologies, Beijing, 100084, PR China; Research Institute for Environmental Innovation (Suzhou), Tsinghua, Suzhou, 215163, PR China.

The local scrubber reclaim (LSR) system plays a critical role in water reclamation and in reducing environmental pollution emissions in semiconductor factories. This study monitored the changes in water quality and assessed the key stages of pollutant removal, with a primary focus on evaluating microbial growth and the shifts in microbial community structure and function in the LSR system. The results showed that activated carbon filtration (ACF) effectively removed total organic carbon (TOC) with a removal rate of 59.

View Article and Find Full Text PDF

Two-dimensional (2D) organic-inorganic halide perovskites are promising sensitive materials for optoelectronic applications due to their strong light-matter interactions, layered structure, long carrier lifetime and diffusion length. However, a high gate bias is indispensable for perovskite-based phototransistors to optimize detection performances, since ion migration seriously screens the gate electric field and the deposition process introduces intrinsic defects, which induces severe leakages and large power dissipation. In this work, an ultrasensitive phototransistor based on the (PEA)SnI perovskite and the Al:HfO ferroelectric layer is meticulously studied, working without an external gate voltage.

View Article and Find Full Text PDF

Any experiment aiming to measure rare events, like Coherent Elastic neutrino-Nucleus Scattering (CE NS) or hypothetical Dark Matter scattering, via nuclear recoils in cryogenic detectors relies crucially on a precise detector calibration at sub-keV energies. The Crab collaboration developed a new calibration technique based on the capture of thermal neutrons inside the target crystal. Together with the Nucleus experiment, first measurements with a moderated Cf neutron source and a cryogenic detector were taken.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!