The complete elastic tensor of Fe0.94O (wüstite) has been determined to 10 GPa using acoustic interferometry at GHz frequencies inside a diamond-anvil cell. The soft mode (C44) elastic constant of FeO is reduced by 20% over the experimental pressure range. An unusual discontinuity in the pressure derivatives of C11 and C12 at 4.7+/-0.2 GPa corresponds to the pressure at which the onset of a magnetic ordering transition is observed by high-pressure Mössbauer spectroscopy and neutron powder diffraction. Our new results combined with literature structural high P-T data suggest that there is a magnetic, although still cubic, phase of FeO between approximately 5 and approximately 17 GPa.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1103/PhysRevLett.93.215502 | DOI Listing |
Nat Prod Res
January 2025
Hubei Key Laboratory of Resources and Chemistry of Chinese Medicine, School of Pharmacy, Hubei University of Chinese Medicine, Wuhan, PR China.
The leaves of (Batal) Iljinsk., a plant native to China that has long been used in traditional Chinese medicine to treat diabetes. It remains to be determined what chemical constituents are responsible for this effect.
View Article and Find Full Text PDFAppl Spectrosc
January 2025
School of Mathematics Physics and Finance, Anhui Polytechnic University, Wuhu, China.
A compact dual-gas sensor based on the two near-infrared distributed feedback diode lasers and a multipass cell has been established for the simultaneous measurement of methane (CH) and acetylene (CH). The time division multiplexing calibration-free direct absorption spectroscopy is used to eliminate the cross interference in the application of multicomponent gas sensors. A wavelength stabilization technique based on the proportion integration differentiation feedback control is developed to suppress laser wavelength drift and an H-infinity (H) filter algorithm to reduce the system noise.
View Article and Find Full Text PDFJ Mater Chem B
January 2025
Department of Electrical, Electronics and Communication Engineering, Indian Institute of Technology Dharwad, Karnataka - 580011, India.
Prostate cancer antigen 3 (PCA3) has emerged as a critical biomarker for the early detection of prostate cancer, complementing the traditional prostate-specific antigen (PSA) testing. This research presents a novel resistive sensor based on reduced graphene oxide (RGO) functionalized with glutaraldehyde (GA)/complementary single-stranded DNA (ss-DNA) for the detection of the PCA3 RNA. The device was meticulously characterized at each fabrication step to confirm the successful integration of the various layers on the sensor device, utilizing atomic force microscopy (AFM) which confirmed the increase in the thickness of the sensor from ∼1.
View Article and Find Full Text PDFSmall
January 2025
Department of Polymers & Functional Materials, CSIR-Indian Institute of Chemical Technology (IICT), Tarnaka, Hyderabad, Telangana, 500007, India.
Heterostructures comprise two or more different semiconducting materials stacked either as co-assemblies or self-sorted based on their dynamics of aggregates. However, self-sorting in heterostructures is rather significant in improving the short exciton diffusion length and charge separation. Despite small organic molecules being known for their self-sorting nature, macrocyclic are hitherto unknown owing to unrestrained assemblies from extended π-conjugated systems.
View Article and Find Full Text PDFSmall Methods
January 2025
Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, 1 Bethel Valley Road, Oak Ridge, TN, TN 37830, USA.
Understanding ferroelectric domain wall dynamics at the nanoscale across a broad range of timescales requires measuring domain wall position under different applied electric fields. The success of piezoresponse force microscopy (PFM) as a tool to apply local electric fields at different positions and imaging their changing position, together with the information obtained from associated switching spectroscopies has fueled numerous studies of the dynamics of ferroelectric domains to determine the impact of intrinsic parameters such as crystalline order, defects and pinning centers, as well as boundary conditions such as environment. However, the investigation of sub-coercive reversible domain wall vibrational modes requires the development of new tools that enable visualizing domain wall motion under varying applied fields with high temporal and spatial resolution while also accounting for spurious electrostatic effects.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!