Vortex-induced diffusivity in reversed field pinch plasmas.

Phys Rev Lett

Consorzio RFX, Associazione EURATOM-ENEA sulla fusione, C.so Stati Uniti 4, I-35127, Padova, Italy.

Published: November 2004

Coherent structures identified in two reversed field pinch experiments are interpreted as a dynamic balance of dipolar and monopolar vortices growing and evolving under the effect of the ExB flow shear. For the first time their contribution to the anomalous transport has been estimated in fusion related plasmas, showing that they can account for up to 50% of the total plasma diffusivity. The experimental findings indicate that the diffusion coefficient associated with the coherent structures depends on the relative population of the two types of vortices and is minimum when the two populations are equal. An interpretative model is proposed to explain this feature.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevLett.93.215003DOI Listing

Publication Analysis

Top Keywords

reversed field
8
field pinch
8
coherent structures
8
vortex-induced diffusivity
4
diffusivity reversed
4
pinch plasmas
4
plasmas coherent
4
structures identified
4
identified reversed
4
pinch experiments
4

Similar Publications

A superresolution (SR) method for the reconstruction of Navier-Stokes (NS) flows from noisy observations is presented. In the SR method, first the observation data are averaged over a coarse grid to reduce the noise at the expense of losing resolution and, then, a dynamic observer is employed to reconstruct the flow field by reversing back the lost information. We provide a theoretical analysis, which indicates a chaos synchronization of the SR observer with the reference NS flow.

View Article and Find Full Text PDF

Glioblastoma (GBM) is the most common malignant primary brain tumor, with a mean survival of less than 2 years. Unique brain structures and the microenvironment, including blood-brain barriers, put great challenges on clinical drug development. Sophoricoside (Sop), an isoflavone glycoside isolated from seeds of Sophora japonica L.

View Article and Find Full Text PDF

Oligonucleotides (ONs) are an increasingly popular category of molecules in the pharmaceutical landscape, particularly attractive for the treatment of genetic and rare diseases. However, analyzing these molecules presents significant challenges, due to their highly hydrophilic nature, multiple negative charges, and the presence of closely related impurities resulting from the complex solid-phase synthesis process. Ion pairing reverse-phase liquid chromatography (IP-RPLC) is the preferred technique for ONs analysis but is not ideal for mass spectrometry (MS) coupling.

View Article and Find Full Text PDF

A key contribution to X-ray dark-field (XDF) contrast is the diffusion of X-rays by sample structures smaller than the imaging system's spatial resolution; this is related to position-dependent small-angle X-ray scattering. However, some experimental XDF techniques have reported that XDF contrast is also generated by resolvable sample edges. Speckle-based X-ray imaging (SBXI) extracts the XDF by analyzing sample-imposed changes to a reference speckle pattern's visibility.

View Article and Find Full Text PDF

This paper proposes a reflective metasurface composed of a single unit structure, yet capable of achieving precise control of two degrees of freedom. By grooving two orthogonal slots on the copper ring, it enables the independent conversion of the two orthogonal components of the incident waves. Consequently, incident linearly-polarized waves can be rotated by an arbitrary angle.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!