We demonstrate experimentally and theoretically that a coherent image of a pure phase object [implemented by a microelectromechanical system (MEMS) micromirror array] may be obtained by use of a spatially incoherent illumination beam. This is accomplished by employing a two-beam source of entangled photons generated by spontaneous parametric down-conversion. One of the beams probes the phase object while the other is scanned. Though each of the beams is, in and of itself, spatially incoherent, the pair of beams exhibits higher-order interbeam coherence.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1103/PhysRevLett.93.213903 | DOI Listing |
Spatial differentiation is the key element for edge detection and holds unquestionable significance in the current information era. All-optical computation based on metasurfaces has emerged as a powerful platform for spatial differentiation due to its advantage of high integration and parallel processing. However, while most current works focus on one- or two-dimensional (2D) spatial differentiation, three-dimensional (3D) all-optical computation for compact spatial differentiator remains elusive.
View Article and Find Full Text PDFPhase-shifting Fringe projection profilometry (FPP) excels in 3D measurements for many macro-scale applications, but as features-of-interest shrink to the microscopic scale, depth-of-field limitations slow measurements and necessitate mechanical adjustments. To address this, we introduce digital holography (DH) for fringe image capture, enabling numerical refocusing of defocused object regions. Our experiments validate this approach and compare depth measurement noise with other DH and FPP methods.
View Article and Find Full Text PDFGhost holography has attracted notable applied interest in the modern quantitative imaging applications with the futuristic features of complex field recovery in the diversified imaging scenarios. However, the utilization of digital holography in ghost frame works introduces space bandwidth or time bandwidth restrictions in the implementation of the technique in applied domains. Here, we propose and demonstrate a quantitative ghost phase imaging approach with holographic ghost diffraction scheme in combination with the phase-shifting technique.
View Article and Find Full Text PDFThe traditional phase shift measurement technique necessitates two orthogonally oriented fringe patterns to complete the phase measurement, which is time-consuming, and the phase modulation of the traditional fringe image exhibits only a gradient change in a single direction of the horizontal-vertical fringes, or a smooth gradient change in the tangential direction of the circular fringes. To enhance the measurement speed and improve the adaptability to large curvature measured specular surfaces, this paper proposes a phase measurement deflectometry (PMD) technique based on composite circular fringes. The composite circular fringes demonstrate a steeper slope in the phase change, enabling the acquisition of finer surface features under identical measurement conditions, effectively improving the detection sensitivity to small shape changes and enhancing the ability to discern fine details.
View Article and Find Full Text PDFOpt Express
January 2025
Phase distributions typically contain richer information about the morphology, structure, and organizational properties of a sample than intensity distributions. However, due to the weak scattering and absorption properties of pure phase objects, intensity measurements are unable to provide information about the phase, making it more challenging to reveal phase structure from the incident light background. Here, we propose a method for visualizing phase objects through simple optical reflection occurring at a glass interface.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!