Chirped solitons as attractors for short light pulses.

Phys Rev E Stat Nonlin Soft Matter Phys

Institut für Theoretische Physik, Heinrich-Heine-Universität Düsseldorf, D-40225 Düsseldorf, Germany.

Published: November 2004

Nonlinear chirped pulse solutions are shown to exist as stable attractors for short light pulses in driven and damped systems. The attractors are determined for systems of different complexity, from simple gain and damping modelings up to the inclusion of higher-order dispersion, Raman processes, and delayed nonlinear responses. The chirped attractors, their stability, as well as the attractor basins can be determined analytically. The analytical predictions are in excellent agreement with numerical simulations.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevE.70.056605DOI Listing

Publication Analysis

Top Keywords

attractors short
8
short light
8
light pulses
8
chirped solitons
4
attractors
4
solitons attractors
4
pulses nonlinear
4
nonlinear chirped
4
chirped pulse
4
pulse solutions
4

Similar Publications

Complex networks, from neuronal assemblies to social systems, can exhibit abrupt, system-wide transitions without external forcing. These endogenously generated "noise-induced transitions" emerge from the intricate interplay between network structure and local dynamics, yet their underlying mechanisms remain elusive. Our study unveils two critical roles that nodes play in catalyzing these transitions within dynamical networks governed by the Boltzmann-Gibbs distribution.

View Article and Find Full Text PDF

Background: Attention-deficit/hyperactivity disorder (ADHD) is a common neuro-developmental disorder that often persists into adulthood. Moreover, it is frequently accompanied by bipolar disorder (BD) as well as borderline personality disorder (BPD). It is unclear whether these disorders share underlying pathomechanisms, given that all three are characterized by alterations in affective states, either long or short-term.

View Article and Find Full Text PDF

Harmful algal bloom prediction using empirical dynamic modeling.

Sci Total Environ

January 2025

NOAA, Global Systems Laboratory, Boulder, CO, USA; National Academies of Sciences, Engineering, and Medicine, Washington, DC, USA. Electronic address:

Harmful Algal Blooms (HABs) can originate from a variety of reasons, including water pollution coming from agriculture, effluent from treatment plants, sewage system leaks, pH and light levels, and the consequences of climate change. In recent years, HAB events have become a serious environmental problem, paralleling population growth, agricultural development, increasing air temperatures, and declining precipitation. Hence, it is crucial to identify the mechanisms responsible for the formation of HABs, accurately assess their short- and long-term impacts, and quantify their variations based on climate projections for developing accurate action plans and effectively managing resources.

View Article and Find Full Text PDF

Continuous Quasi-Attractors dissolve with too much - or too little - variability.

PNAS Nexus

December 2024

SISSA, Scuola Internazionale Superiore di Studi Avanzati, Cognitive Neuroscience, Trieste 34136, Italy.

Recent research involving bats flying in long tunnels has confirmed that hippocampal place cells can be active at multiple locations, with considerable variability in place field size and peak rate. With self-organizing recurrent networks, variability implies inhomogeneity in the synaptic weights, impeding the establishment of a continuous manifold of fixed points. Are continuous attractor neural networks still valid models for understanding spatial memory in the hippocampus, given such variability? Here, we ask what are the noise limits, in terms of an experimentally inspired parametrization of the irregularity of a single map, beyond which the notion of continuous attractor is no longer relevant.

View Article and Find Full Text PDF

The activity and connectivity of neurons in the primate brain underlying behavior cannot yet be completely specified, but neural networks provide complete models of the connectivity and activity that performs specific tasks and provide insight into the neural computations performed by the primate brain (Fetz and Shupe 2003). Studies of neurons in the monkey cortex have shown that short-term memory of sensory events may be mediated by sustained neural activity. Short-term memory tasks have been modeled with dynamic neural networks using a single continuous variable and a gate input to create a sample-and-hold (SAH) function (Zipser 1991; Maier 2003).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!