In this paper, we revisit one-channel time reversal (TR) experiments through multiple scattering media in the framework of the multiple scattering theory. The hyperresolution and the self-averaging property are retrieved. The developed formalism leads to a deeper understanding of the role of the ladder and most-crossed diagrams in a TR experiment and also establishes the link between TR and coherent backscattering (CBS). Especially, we show that when the initial source and the time reversal point are at the same location, the time-reversed amplitude is twice higher. Surprisingly, this enhancement is due to the ladder diagrams and not to the most-crossed ones, contrary to CBS. These theoretical predictions are confirmed by experimental results. The experiments are performed with ultrasonic waves propagating through a random collection of parallel steel rods.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1103/PhysRevE.70.046601 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!