Forward and backward laser-guided motion of an oil droplet.

Phys Rev E Stat Nonlin Soft Matter Phys

Department of Physics, Graduate School of Science, Kyoto University & CREST, Kyoto 606-8502, Japan.

Published: October 2004

Directed motion of an oil droplet floating in an aqueous solution is generated by using a laser beam. Interestingly, the direction of the droplet motion can be switched between forward and backward by changing the optical path of the laser through the droplet. This motion is caused above a certain critical power of the laser, and above this value the velocity increases almost linearly with the power. The mechanism of this directed motion is explained as follows: the oil droplet is locally heated by a narrow laser beam, this local heating induces a specific mode of convection inside the droplet, and this generated convective motion produces translational directed motion of the droplet.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevE.70.046301DOI Listing

Publication Analysis

Top Keywords

oil droplet
12
directed motion
12
forward backward
8
motion oil
8
laser beam
8
droplet motion
8
motion
7
droplet
7
backward laser-guided
4
laser-guided motion
4

Similar Publications

High internal phase Pickering emulsions stabilized by Pleurotus eryngii protein-polysaccharide conjugates.

Int J Biol Macromol

January 2025

College of Food Engineering and Nutritional Science, Shaanxi Normal University, 620 West Chang an Avenue, Xian, Shaanxi 710119, China. Electronic address:

In this work, Pleurotus eryngii protein-polysaccharide conjugates (PE-PPCs) were used as the only stabilizer for the preparation of high internal phase emulsions (HIPEs). PE-PPCs presented spherical particles in solution, and their three-phase contact angle had a strong correlation with pH values, and the angle at pH 10.0 was almost 90°, showing the most balanced hydrophilicity and hydrophobicity.

View Article and Find Full Text PDF

Efficient stabilizing effect of low-dose zein/xanthan gum nanoparticles at the oil-water interface.

Int J Biol Macromol

January 2025

Department of Nutrition and Health, China Agricultural University, Beijing 100193, China. Electronic address:

The inherent propensity for aggregation necessitates the use of high concentrations of protein-polysaccharide nanoparticles to achieve stable Pickering emulsions. This study employed xanthan gum (XG) to mitigate the pronounced aggregation of zein nanoparticles by structure construction, thereby enhancing the emulsifying efficiency of zein/XG (Z/XG) nanoparticles. The Z/XG nanoparticles displayed significantly enhanced dispersity, with the absolute ζ-potential increasing from 6.

View Article and Find Full Text PDF

Swift Droplet Manipulation on BTO/Polyimide Slippery Surfaces.

Langmuir

January 2025

Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei University, Wuhan 430062, People's Republic of China.

Droplet manipulation on functional surfaces is an urgent problem to be solved. Fast and precise droplet manipulation plays an important role in many applications, such as microreactors and microfluidics. Although numerous techniques have been developed to manipulate droplets by injecting external stimuli, it remains a challenge to achieve high-precision, high-sensitivity, and fast droplet manipulation on smart, slippery response surfaces.

View Article and Find Full Text PDF

A novel emulsifier for Pickering emulsion composed of whey protein and OSA-pectin loaded with Monascus pigments.

Int J Biol Macromol

January 2025

Department of Nutrition and Food Science, University of Maryland, College Park, MD 20742, United States.

Protein-polysaccharide complex carrier can solve the problem of insufficient stability of Monascus pigments (MPs), a kind of natural pigments, against heat and light. It also has the function to stabilize Pickering emulsion (PE) that can be used as fat replacer in meat products. In this study, heat denatured whey protein (HWP) and pectin modified by octenyl succinic anhydride (OSA-pectin) were prepared into complex by adding Ca loaded with MPs.

View Article and Find Full Text PDF

This study aimed to develop ultrasonically-assisted, alcohol-free, and noncorrosive aqueous zein/turmeric essential oil (TEO)-loaded nanoemulsions (NEs) to stimulate pullulan/carboxymethyl chitosan (P/CMCS)-based edible films for mango fruit preservation. The influence of innovative sonicated zein/TEO-based NEs (ZTNEs) as nanofillers on the physico-mechanical characteristics of the resulting P/CMCS edible films was investigated. A stable and well-dispersed ZTNE was achieved using 20 % zein with 10 min of ultrasound treatment, leading to a reduced droplet size (194.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!