Molten salts bearing anion receptor.

Chem Commun (Camb)

Department of Biotechnology, Tokyo University of Agriculture & Technology, Koganei, Tokyo 184-8588, Japan.

Published: December 2004

A series of organoboron molten salts prepared by hydroboration of allyl imidazolium type molten salts with various hydroborating reagents such as monobromoborane dimethyl sulfide complex, 9-borabicyclo[3.3.1]nonane (9-BBN) and mesitylborane, and subsequent anion exchange reaction exhibited selective cation transporting property with ionic conductivity of 7.79 x 10(-5) - 6.25 x 10(-6) S cm(-1) at 323 K.

Download full-text PDF

Source
http://dx.doi.org/10.1039/b408839eDOI Listing

Publication Analysis

Top Keywords

molten salts
12
salts bearing
4
bearing anion
4
anion receptor
4
receptor series
4
series organoboron
4
organoboron molten
4
salts prepared
4
prepared hydroboration
4
hydroboration allyl
4

Similar Publications

Analogous to the aqueous solution where the pH of the solvent affects its multiple behaviors, the optical acidity and basicity of molten salts also greatly influence their thermophysical and thermochemical properties. In the study, we develop ion probes to quantitatively determine the acidity-basicity scale of molten NaCl-AlCl ( = 1.5-2.

View Article and Find Full Text PDF

Thermodynamics and transport in molten chloride salts and their mixtures.

Phys Chem Chem Phys

December 2024

School of Physical and Chemical Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, UK.

Molten salts are important in a number of energy applications, but the fundamental mechanisms operating in ionic liquids are poorly understood, particularly at higher temperatures. This is despite their candidacy for deployment in solar cells, next-generation nuclear reactors, and nuclear pyroprocessing. We perform extensive molecular dynamics simulations over a variety of molten chloride salt compositions at varying temperature and pressures to calculate the thermodynamic and transport properties of these liquids.

View Article and Find Full Text PDF

Recent Advances in Salt-Assisted Synthesis of 2D Materials.

Small

December 2024

Wuhan National Laboratory for Optoelectronics, School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan, 430074, China.

Two-dimensional (2D) materials have been attracting extensive interest due to their remarkable chemical, optical, electrical, and magnetic properties, making them ideal candidates for a broad range of applications. Developing facile synthesis methods that can fabricate high-quality 2D materials in an efficient, scalable, and cost-effective way is essential. Among the emerging techniques, salt-assisted methods to synthesize 2D materials, including molten salt method, salt-assisted chemical vapor deposition, and salt-template method, has demonstrated significant potential in fulfilling these requirements.

View Article and Find Full Text PDF

The study and improvement of the corrosion resistance of materials used in concentrated solar power plants is a permanent field of research. This involves determining their chemical stability when in contact with heat transfer fluids, such as molten nitrate salts. Various studies indicate an improvement in the corrosion resistance of iron-based alloys with the incorporation of elements that show high reactivity and solubility in molten nitrate salts, such as Cr and Mo.

View Article and Find Full Text PDF

Cascade Reaction Enables Heterointerfaces-Enriched Nanoarrays for Ampere-Level Hydrogen Production.

Angew Chem Int Ed Engl

December 2024

Frontiers Science Center for Flexible Electronics & Shaanxi Institute of Flexible Electronics, Northwestern Polytechnical University, Xi'an 710072, China.

Designing high-performance electrocatalysts with superior catalytic activity and stability is essential for large-scale hydrogen production via water electrolysis. Heterostructure nanoarrays are promising candidates, though achieving both high activity and stability simultaneously, especially under high current densities, remains challenging. To this end, we have developed a cascade reaction process that constructs a series of heterostructure nanoarrays with rich heterointerfaces.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!