Background: Microencapsulation is under consideration as a means of enabling pancreatic islet transplantation. To understand better the ongoing destructive host response, we examined whether the adaptive immune system of the recipient recognized polymer-encapsulated xenogeneic cells implanted intraperitoneally.
Methods: Balb/c mice were implanted with xenogeneic Chinese hamster ovary cells, inside and outside poly(hydroxyethyl methacrylate-methyl methacrylate) microcapsules, and responses were compared with xenografted Chinese hamster skin (positive control). Capsules were localized within an agarose rod. Splenocyte proliferation upon rechallenge in vitro, antibody titer in serum, and Th1/2 polarization (assessed by interleukin-4 and interferon-gamma in supernatants of antigen-challenged splenocytes and immunoglobulin [Ig]G1 and IgG2a antibody isotypes in serum) were measured.
Results: Encapsulation did not prevent a strong recipient antibody response. Splenocyte proliferation in vitro did not differ after priming by implanted cells, inside or outside capsules. Thus, the capsule membrane did not prevent indirect recognition of shed antigens. However, after 10 days of implantation, proliferation was lower than that induced by skin grafts, although this difference disappeared by 2 months. This transient T-cell suppression was unexpected because encapsulated cell viability was already compromised by 10 days. The influence of Th1/2 bias did not explain the observed suppression. Cells inside capsules elicited a consistent Th2 response, whereas cells outside capsules elicited a mixed response, and skin xenografts showed an initial Th2 response that became mixed by 2 months.
Conclusions: Encapsulation does not prevent host immune responses, but the inflammatory response to the implanted biomaterials or xenogeneic cells may be responsible both for encapsulated cell death and transient T-cell suppression.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1097/01.tp.0000142094.63083.fb | DOI Listing |
Cancer Immunol Res
January 2025
Baylor College of Medicine, Houston, TX, United States.
Natural killer T cells (NKTs) are a promising platform for cancer immunotherapy, but few genes involved in regulation of NKT therapeutic activity have been identified. To find regulators of NKT functional fitness, we developed a CRISPR/Cas9-based mutagenesis screen that employs a guide RNA (gRNA) library targeting 1,118 immune-related genes. Unmodified NKTs and NKTs expressing a GD2-specific chimeric antigen receptor (GD2.
View Article and Find Full Text PDFNeural Regen Res
January 2025
Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China.
Ischemic stroke is a significant global health crisis, frequently resulting in disability or death, with limited therapeutic interventions available. Although various intrinsic reparative processes are initiated within the ischemic brain, these mechanisms are often insufficient to restore neuronal functionality. This has led to intensive investigation into the use of exogenous stem cells as a potential therapeutic option.
View Article and Find Full Text PDFImmune Netw
December 2024
Department of Biochemistry and Molecular Biology, Seoul National University College of Medicine, Seoul 03080, Korea.
Chimeric antigen receptor-transduced T (CAR-T) cell therapy is an effective cell therapy against advanced hematological tumors. However, the use of autologous T cells limits its timely and universal generation. Allogeneic CAR-T cell therapy may be a good alternative as a ready-to-use therapeutic.
View Article and Find Full Text PDFTransplant Rev (Orlando)
January 2025
Laboratory of Ocular Immunology, Transplantation, and Regeneration, Schepens Eye Research Institute of Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA. Electronic address:
Immunology depends on maintaining a delicate balance within the human body, and disruptions can result in conditions such as autoimmune diseases, immunodeficiencies, and hypersensitivity reactions. This balance is especially crucial in transplantation immunology, where one of the primary challenges is preventing graft rejection. Such rejection can lead to organ failure, increased patient mortality, and higher healthcare costs due to the limited availability of donor tissues relative to patient needs.
View Article and Find Full Text PDFClin Transplant Res
December 2024
The Research Institute for Transplantation, Yonsei University College of Medicine, Seoul, Korea.
Foreign antigen recognition is the ability of immune cells to distinguish self from nonself, which is crucial for immune responses in both invertebrates and vertebrates. In vertebrates, T cells play a pivotal role in graft rejection by recognizing alloantigens presented by antigen-presenting cells through direct, indirect, or semidirect pathways. B cells also significantly contribute to the indirect presentation of antigens to T cells.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!