Objectives: To compare the effects of low vs. high tidal volume (Vt) with three positive end-expiratory pressure (PEEP) strategies on activated neutrophil influx into the lung.

Design: Prospective, randomized controlled animal study.

Setting: Animal laboratory in a university hospital.

Subjects: Newborn piglets.

Interventions: Surfactant-depleted piglets were randomized in littermate pairs; to PEEP of either 0 (zero end-expiratory pressure [ZEEP]; n = 6), 8 cm H2O (PEEP 8; n = 5), or 1 cm H2O above the lower inflection point (LIP) (PEEP>LIP; n = 6). Within each pair piglets were randomized to a low VT (5-7 mL/kg) or high VT strategy (17-19 mL/kg). After 4 hrs of mechanical ventilation, 18-fluorodeoxyglucose (18FDG) was injected and positron emission tomography scanning was performed.

Measurements And Main Results: VT and PEEP changes on influx constants of 18FDG were assessed by analysis of variance. A within-litter comparison of Vt was nonsignificant (p = .50). A between-litter comparison, ordered in linear trend rank, from ZEEP, to PEEP 8, to PEEP>LIP, showed a strong effect of PEEP on influx constant (p = .019).

Conclusions: PEEP set above the LIP on the inspiratory limb of the pressure-volume curve affords a stronger lung protection than VT strategy.

Download full-text PDF

Source
http://dx.doi.org/10.1097/01.ccm.0000147832.13213.1eDOI Listing

Publication Analysis

Top Keywords

end-expiratory pressure
12
positive end-expiratory
8
lower inflection
8
inflection point
8
piglets randomized
8
peep
7
pressure lower
4
point minimizes
4
influx
4
minimizes influx
4

Similar Publications

Background: Advanced respiratory monitoring through the measurement of esophageal pressure (Pes) as a surrogate of pleural pressure helps guiding mechanical ventilation in ICU patients. Pes measurement with an esophageal balloon catheter, the current clinical reference standard, needs complex calibrations and a multitude of factors influence its reliability. Solid-state pressure sensors might be able to overcome these limitations.

View Article and Find Full Text PDF

Pulmonary arteriovenous malformations (PAVM) are characterized by abnormal pulmonary vessels forming arteriovenous shunts that compromise oxygenation of the blood, causing hypoxemia, and predispose to infections and cerebral ischemia. The patient in this case was a 38-year-old male who presented with tachypnea and dyspnea, cyanosis of extremities, and significant digital clubbing. The patient had structural epilepsy secondary to neurosurgery for a cerebral abscess during childhood.

View Article and Find Full Text PDF

Effects of routine postural repositioning on the distribution of lung ventilation and perfusion in mechanically ventilated patients.

Intensive Crit Care Nurs

January 2025

Department of Intensive Care Medicine, Hospital Universitario de La Princesa, Madrid, Spain; Centro de investigación en red CIBERES de enfermedades respiratorias, Instituto de Salud, Carlos III, Madrid, Spain. Electronic address:

Objectives: To analyse the effects on respiratory function, lung volume and the regional distribution of ventilation and perfusion of routine postural repositioning in mechanically ventilated critically ill patients.

Methods: Prospective descriptive physiological study. We evaluated gas-exchange, lung mechanics, and Electrical Impedance Tomography (EIT) determined end-expiratory lung impedance and regional ventilation and perfusion distribution in five body positions: supine-baseline (S1); first lateralisation at 30° (L1); second supine position (S2), second contralateral lateralisation (L2) and third final supine position (S3).

View Article and Find Full Text PDF

Effects of Variable Ventilation on Gas Exchange in an Experimental Model of Capnoperitoneum: A Randomized Crossover Study.

Anesth Analg

January 2025

From the Unit for Anaesthesiological Investigations, Department of Anaesthesiology, Pharmacology, Intensive Care and Emergency Medicine, University of Geneva, Geneva, Switzerland.

Background: The rapid advancement of minimally invasive surgical techniques has made laparoscopy a preferred alternative because it reduces postoperative complications. However, inflating the peritoneum with CO2 causes a cranial shift of the diaphragm decreasing lung volume and impairing gas exchange. Additionally, CO2 absorption increases blood CO2 levels, further complicating mechanical ventilation when the lung function is already compromised.

View Article and Find Full Text PDF

Introduction: The understanding of the interaction of closed-loop control of ventilation and oxygenation, specifically fraction of inspired oxygen (FiO2) and positive end-expiratory pressure (PEEP), and fluid resuscitation after burn injury and acute lung injury from smoke inhalation is limited. We compared the effectiveness of FiO2, PEEP, and ventilation adjusted automatically using adaptive support ventilation (ASV) and decision support fluid resuscitation based on urine output in a clinically relevant conscious ovine model of lung injury secondary to combined smoke inhalation and major burn injury.

Methods: Sheep were subjected to burn and smoke inhalation injury under deep anesthesia and analgesia.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!