MultiPLX: automatic grouping and evaluation of PCR primers.

Bioinformatics

Department of Bioinformatics, University of Tartu, Tartu, Estonia.

Published: April 2005

Unlabelled: MultiPLX is a new program for automatic grouping of PCR primers. It can use many different parameters to estimate the compatibility of primers, such as primer-primer interactions, primer-product interactions, difference in melting temperatures, difference in product length and the risk of generating alternative products from the template. A unique feature of the MultiPLX is the ability to perform automatic grouping of large number (thousands) of primer pairs.

Availability: Binaries for Windows, Linux and Solaris are available from http://bioinfo.ebc.ee/download/. A graphical version with limited capabilities can be used through a web interface at http://bioinfo.ebc.ee/multiplx/. The source code of the program is available on request for academic users.

Contact: maido.remm@ut.ee.

Download full-text PDF

Source
http://dx.doi.org/10.1093/bioinformatics/bti219DOI Listing

Publication Analysis

Top Keywords

automatic grouping
12
pcr primers
8
multiplx automatic
4
grouping evaluation
4
evaluation pcr
4
primers unlabelled
4
unlabelled multiplx
4
multiplx program
4
program automatic
4
grouping pcr
4

Similar Publications

Assessment of deep learning technique for fully automated mandibular segmentation.

Am J Orthod Dentofacial Orthop

February 2025

Department of Orthodontics, Faculty of Dentistry, Çanakkale Onsekiz Mart University, Çanakkale, Turkey.

Introduction: This study aimed to assess the precision of an open-source, clinician-trained, and user-friendly convolutional neural network-based model for automatically segmenting the mandible.

Methods: A total of 55 cone-beam computed tomography scans that met the inclusion criteria were collected and divided into test and training groups. The MONAI (Medical Open Network for Artificial Intelligence) Label active learning tool extension was used to train the automatic model.

View Article and Find Full Text PDF

Background: Placement of right precordial leads in higher intercostal spaces (EEP-ECG) improves the detection of Brugada Syndrome (BrS). Given the potential difficulty of lead placement and the transient nature of BrS ECG patterns, we developed a model to predict EEP-ECG from a standard 12‑lead ECG.

Objective: To create and validate a model that derives EEP-ECG leads from a standard 12‑lead ECG.

View Article and Find Full Text PDF

Ledged Beam Walking Test Automatic Tracker: Artificial intelligence-based functional evaluation in a stroke model.

Comput Biol Med

January 2025

Neurological Sciences and Cerebrovascular Research Laboratory, Department of Neurology and Stroke Centre, Neurology and Cerebrovascular Disease Group, Neuroscience Area La Paz Institute for Health Research (idiPAZ), (La Paz University Hospital- Universidad Autónoma de Madrid), Spain. Electronic address:

The quantitative evaluation of motor function in experimental stroke models is essential for the preclinical assessment of new therapeutic strategies that can be transferred to clinical research; however, conventional assessment tests are hampered by the evaluator's subjectivity. We present an artificial intelligence-based system for the automatic, accurate, and objective analysis of target parameters evaluated by the ledged beam walking test, which offers higher sensitivity than the current methodology based on manual and visual counting. This system employs a residual deep network model, trained with DeepLabCut (DLC) to extract target paretic hindlimb coordinates, which are categorized to provide a ratio measurement of the animal's neurological deficit.

View Article and Find Full Text PDF

Artificial intelligence (AI), with advantages such as automatic feature extraction and high data processing capacity and being unaffected by fatigue, can accurately analyze images obtained from colonoscopy, assess the quality of bowel preparation, and reduce the subjectivity of the operating physician, which may help to achieve standardization and normalization of colonoscopy. In this study, we aimed to explore the value of using an AI-driven intestinal image recognition model to evaluate intestinal preparation before colonoscopy. In this retrospective analysis, we analyzed the clinical data of 98 patients who underwent colonoscopy in Nantong First People's Hospital from May 2023 to October 2023.

View Article and Find Full Text PDF

Induction motors are essential components in industry due to their efficiency and cost-effectiveness. This study presents an innovative methodology for automatic fault detection by analyzing images generated from the Fourier spectra of current signals using deep learning techniques. A new preprocessing technique incorporating a distinctive background to enhance spectral feature learning is proposed, enabling the detection of four types of faults: healthy motor coupled to a generator with a broken bar (HGB), broken rotor bar (BRB), race bearing fault (RBF), and bearing ball fault (BBF).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!