Polycystic ovary syndrome (PCOS) is a common reproductive endocrine disorder characterized by ovarian hyperandrogenism. Theca interna cells isolated from the ovaries of women with PCOS are characterized by increased expression of cytochrome P450 17alpha-hydroxylase (CYP17) [steroid 17alpha-hydroxylase/17,20 lyase (P450c17)], a steroidogenic enzyme obligatory for the biosynthesis of androgens. Augmented expression of the gene encoding P450c17 (CYP17) in PCOS theca has been attributed, in part, to differential transcriptional regulation of the CYP17 promoter in normal and PCOS cells. The present studies examine whether CYP17 gene expression is also posttranscriptionally regulated at the level of mRNA stability in normal and PCOS theca cells maintained in long-term culture. Determination of endogenous CYP17 mRNA half-life by pharmacological inhibition of transcription demonstrated that the half-life of CYP17 mRNA increased 2-fold in PCOS theca cells, compared with normal theca cells. Forskolin treatment also prolonged CYP17 mRNA half-life in both normal and PCOS theca cells. In vitro mRNA degradation studies demonstrated that the 5'-untranslated region confers increased stability to CYP17 mRNA in PCOS theca cells and showed that the 5'-untranslated region of CYP17 also confers forskolin-stimulated stabilization of CYP17 mRNA. These studies indicate that a slower rate of CYP17 mRNA decay contributes to increased steady-state mRNA accumulation and augmented CYP17 gene expression in PCOS theca cells.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1210/jc.2004-1860 | DOI Listing |
Toxicol Sci
January 2025
Department of Chemistry and Environmental Science, New Jersey Institute of Technology, Newark, NJ, 07103.
Phthalates are known endocrine disrupting chemicals and ovarian toxicants that are used widely in consumer products. Phthalates have been shown to exert ovarian toxicity on multiple endpoints, altering transcription of genes responsible for normal ovarian function. However, the molecular mechanisms by which phthalates act on the ovary are not well understood.
View Article and Find Full Text PDFHarmful Algae
January 2025
Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China. Electronic address:
Yessotoxin is one of the shellfish toxins leading to mussel farm closures in the Adriatic Sea of Italy. Two putative Gonyaulax spinifera strains GSA0501 and GSA0602 are known as yessotoxins producers, but their identities have remained elusive since 2005. To address this gap, we established five Gonyaulax strains by incubating sediments from the Adriatic Sea and subsequently isolating single cells.
View Article and Find Full Text PDFResearch (Wash D C)
December 2024
Department of Obstetrics and Gynecology, National Clinical Research Center for Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
Exposure to airborne fine particulate matter (PM) is strongly associated with poor fertility and ovarian damage. However, the mechanism underlying this remains largely unclear. Here, we found that PM markedly impaired murine ovarian reserve, decreased hormone levels, and aggravated ovarian inflammation.
View Article and Find Full Text PDFReprod Fertil Dev
December 2024
Centre for Reproductive Health, Hudson Institute of Medical Research and Department of Molecular and Translational Science, Monash University, Clayton, Vic, Australia.
Arch Gynecol Obstet
December 2024
Department of Assisted Reproductive Technologies and Fertility Preservation, Jeanne de Flandre Hospital, CHU Lille, 59000, Lille, France.
Introduction: Ovarian tissue cryopreservation (OTC) is recommended by scientific societies for women undergoing highly gonadotoxic cancer treatments. Following transplantation, the restoration of ovarian function is typically characterised by the resumption of spontaneous menstruation. Yet, a few studies have looked at the longitudinal hormonal variations following transplantation.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!