A neural network model of memory and higher cognitive functions.

Int J Psychophysiol

Ross University, Portsmouth, Commonwealth of Dominica.

Published: January 2005

I first describe a neural network model of associative memory in a small region of the brain. The model depends, unconventionally, on disinhibition of inhibitory links between excitatory neurons rather than long-term potentiation (LTP) of excitatory projections. The model may be shown to have advantages over traditional neural network models both in terms of information storage capacity and biological plausibility. The learning and recall algorithms are independent of network architecture, and require no thresholds or finely graded synaptic strengths. Several copies of this local network are then connected by means of many, weak, reciprocal, excitatory projections that allow one region to control the recall of information in another to produce behaviors analogous to serial memory, classical and operant conditioning, secondary reinforcement, refabrication of memory, and fabrication of possible future events. The network distinguishes between perceived and recalled events, and can predicate its response on the absence as well as the presence of particular stimuli. Some of these behaviors are achieved in ways that seem to provide instances of self-awareness and imagination, suggesting that consciousness may emerge as an epiphenomenon in simple brains.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ijpsycho.2004.05.007DOI Listing

Publication Analysis

Top Keywords

neural network
12
network model
8
excitatory projections
8
network
5
model
4
memory
4
model memory
4
memory higher
4
higher cognitive
4
cognitive functions
4

Similar Publications

Artificial Intelligence-Based Detection and Numbering of Dental Implants on Panoramic Radiographs.

Clin Implant Dent Relat Res

February 2025

SEMRUK Technology Inc., Cumhuriyet Teknokent, Sivas, Turkiye.

Objectives: This study aimed to develop an artificial intelligence (AI)-based deep learning model for the detection and numbering of dental implants in panoramic radiographs. The novelty of this model lies in its ability to both detect and number implants, offering improvements in clinical decision support for dental implantology.

Materials And Methods: A retrospective dataset of 32 585 panoramic radiographs, collected from patients at Sivas Cumhuriyet University between 2014 and 2024, was utilized.

View Article and Find Full Text PDF

CardiacField: computational echocardiography for automated heart function estimation using two-dimensional echocardiography probes.

Eur Heart J Digit Health

January 2025

Department of Cardiovascular Surgery of Zhongshan Hospital, Fudan University, Shanghai 200032, China.

Aims: Accurate heart function estimation is vital for detecting and monitoring cardiovascular diseases. While two-dimensional echocardiography (2DE) is widely accessible and used, it requires specialized training, is prone to inter-observer variability, and lacks comprehensive three-dimensional (3D) information. We introduce CardiacField, a computational echocardiography system using a 2DE probe for precise, automated left ventricular (LV) and right ventricular (RV) ejection fraction (EF) estimations, which is especially easy to use for non-cardiovascular healthcare practitioners.

View Article and Find Full Text PDF

Research on atrial fibrillation diagnosis in electrocardiograms based on CLA-AF model.

Eur Heart J Digit Health

January 2025

Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, No. 88 West Taishan Road, Zhuzhou 412007, Hunan, China.

Aims: The electrocardiogram (ECG) is the primary method for diagnosing atrial fibrillation (AF), but interpreting ECGs can be time-consuming and labour-intensive, which deserves more exploration.

Methods And Results: We collected ECG data from 6590 patients as YY2023, classified as Normal, AF, and Other. Convolutional Neural Network (CNN), bidirectional Long Short-Term Memory (BiLSTM), and Attention construct the AF recognition model CNN BiLSTM Attention-Atrial Fibrillation (CLA-AF).

View Article and Find Full Text PDF

Multimodal data integration to predict atrial fibrillation.

Eur Heart J Digit Health

January 2025

Cardiovascular Division, Department of Medicine, University of Minnesota Medical School, 401 East River Parkway, Minneapolis, MN, USA.

Aims: Many studies have utilized data sources such as clinical variables, polygenic risk scores, electrocardiogram (ECG), and plasma proteins to predict the risk of atrial fibrillation (AF). However, few studies have integrated all four sources from a single study to comprehensively assess AF prediction.

Methods And Results: We included 8374 (Visit 3, 1993-95) and 3730 (Visit 5, 2011-13) participants from the Atherosclerosis Risk in Communities Study to predict incident AF and prevalent (but covert) AF.

View Article and Find Full Text PDF

A 3D decoupling Alzheimer's disease prediction network based on structural MRI.

Health Inf Sci Syst

December 2025

School of Mathematics and Computing, University of Southern Queensland, 487-535 West Street, Toowoomba, QLD 4350 Australia.

Purpose: This paper aims to develop a three-dimensional (3D) Alzheimer's disease (AD) prediction method, thereby bettering current predictive methods, which struggle to fully harness the potential of structural magnetic resonance imaging (sMRI) data.

Methods: Traditional convolutional neural networks encounter pressing difficulties in accurately focusing on the AD lesion structure. To address this issue, a 3D decoupling, self-attention network for AD prediction is proposed.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!