In 3 experiments, the authors investigated spatial updating in augmented reality environments. Participants learned locations of virtual objects on the physical floor. They were turned to appropriate facing directions while blindfolded before making pointing judgments (e.g., "Imagine you are facing X. Point to Y"). Experiments manipulated the angular difference between the learning heading and the imagined heading and between the actual heading and the imagined heading. The effect of actual-imagined on pointing latency was observed for naive users but not for users with brief training or instructions concerning the fact that objects can move with body movements. The results indicated that naive users used an environment-stabilized reference frame to access information arrays, but with experience and instruction the nature of the representation changed from an environment stabilized to a body stabilized reference frame.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1037/1076-898X.10.4.238 | DOI Listing |
Natl Sci Rev
January 2025
Division of Advanced Materials Engineering, College of Engineering, Research Center for Advanced Materials Development (RCAMD), Jeonbuk National University (JBNU), Jeonju 54896, South Korea.
Ever-increasing demand for efficient optoelectronic devices with a small-footprinted on-chip light emitting diode has driven their expansion in self-emissive displays, from micro-electronic displays to large video walls. InGaN nanowires, with features like high electron mobility, tunable emission wavelengths, durability under high current densities, compact size, self-emission, long lifespan, low-power consumption, fast response, and impressive brightness, are emerging as the choice of micro-light emitting diodes (µLEDs). However, challenges persist in achieving high crystal quality and lattice-matching heterostructures due to composition tuning and bandgap issues on substrates with differing crystal structures and high lattice mismatches.
View Article and Find Full Text PDFMultidimensional 3D-rendered objects are an important component of vision research and video- gaming applications, but it has remained challenging to parametrically control and efficiently generate those objects. Here, we describe a toolbox for controlling and efficiently generating 3D rendered objects composed of ten separate visual feature dimensions that can be fine-adjusted using python scripts. The toolbox defines objects as multi-dimensional feature vectors with primary dimensions (object body related features), secondary dimensions (head related features) and accessory dimensions (including arms, ears, or beaks).
View Article and Find Full Text PDFJMIR Serious Games
January 2025
Department of Medical and Rehabilitation Care, Angers University Hospital, Angers, France.
Background: Reminiscence therapy through music is a psychosocial intervention with benefits for older patients with neurocognitive disorders. Therapies using virtual or augmented reality are efficient in ecologically assessing, and eventually training, episodic memory in older populations. We designed a semi-immersive musical game called "A Life in Songs," which invites patients to immerse themselves in a past era through visuals and songs from that time period.
View Article and Find Full Text PDFAppl Ergon
January 2025
Department of Industrial Engineering, Clemson University, Clemson, SC, USA. Electronic address:
The need to train non-technical skills (NTS) has seen a growing emphasis in recent literature, as they have been associated with improved patient outcomes. NTS training often utilizes live simulations where healthcare workers can practice these skills, but simulations like this can be expensive and resource intensive to run. Training technical skills using extended reality tools (e.
View Article and Find Full Text PDFInt J Comput Assist Radiol Surg
January 2025
Faculty of Computer Science and Research Campus STIMULATE, Otto-von-Guericke University of Magdeburg, Magdeburg, Germany.
Purpose: Structured abdominal examination is an essential part of the medical curriculum and surgical training, requiring a blend of theory and practice from trainees. Current training methods, however, often do not provide adequate engagement, fail to address individual learning needs or do not cover rare diseases.
Methods: In this work, an application for structured Abdominal Examination Training using Augmented Reality (AETAR) is presented.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!