Positional-scanning combinatorial libraries of fluorescence resonance energy transfer peptides were used for the analyses of the S(3) to S(1)' subsites of the somatic angiotensin I-converting enzyme (ACE). Substrate specificity of ACE catalytic domains (C- and N-domains) was assessed in an effort to design selective substrates for the C-domain. Initially, we defined the S(1) specificity by preparing a library with the general structure Abz-GXXZXK(Dnp)-OH [Abz = o-aminobenzoic acid, K(Dnp) = N(epsilon)-2,4-dinitrophenyllysine, and X is a random residue], where Z was successively occupied with one of the 19 natural amino acids with the exception of Cys. The peptides containing Arg and Leu in the P(1) position had higher C-domain selectivity. In the sublibraries Abz-GXXRZK(Dnp)-OH, Abz-GXZRXK(Dnp)-OH, and Abz-GZXRXK(Dnp)-OH, Arg was fixed at P(1) so we could define the C-domain selectivity of the S(1)', S(2), and S(3) subsites. On the basis of the results from these libraries, we synthesized peptides Abz-GVIRFK(Dnp)-OH and Abz-GVILFK(Dnp)-OH which contain the most favorable residues for C-domain selectivity. Systematic reduction of the length of these two peptides resulted in Abz-LFK(Dnp)-OH, which demonstrated the highest selectivity for the recombinant ACE C-domain (k(cat)/K(m) = 36.7 microM(-1) s(-1)) versus the N-domain (k(cat)/K(m) = 0.51 microM(-1) s(-1)). The substrate binding of Abz-LFK(Dnp)-OH with testis ACE using a combination of conformational analysis and molecular docking was examined, and the results shed new light on the binding characteristics of the enzyme.

Download full-text PDF

Source
http://dx.doi.org/10.1021/bi048423rDOI Listing

Publication Analysis

Top Keywords

c-domain selectivity
12
positional-scanning combinatorial
8
combinatorial libraries
8
libraries fluorescence
8
fluorescence resonance
8
resonance energy
8
energy transfer
8
transfer peptides
8
substrate specificity
8
angiotensin i-converting
8

Similar Publications

Avian TRIM13 attenuates antiviral innate immunity by targeting MAVS for autophagic degradation.

Autophagy

November 2024

State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.

Article Synopsis
  • MAVS is a key player in the body's antiviral immune response, and its regulation is essential for maintaining immune balance.
  • The study discovered that a new protein in ducks, ApdTRIM13, negatively regulates MAVS by targeting it for degradation during RNA virus infections.
  • The process involves another protein, ApdSQSTM1, which helps ApdTRIM13 deliver MAVS to cellular structures for degradation, highlighting a unique mechanism linking autophagy and immune responses in birds.
View Article and Find Full Text PDF

KDM4A-F enzymes are a subfamily of histone demethylases containing the Jumonji C domain (JmjC) using Fe(II) and 2-oxoglutarate for their catalytic function. Overexpression or deregulation of KDM4 enzymes is associated with various cancers, altering chromatin structure and causing transcriptional dysfunction. As KDM4 enzymes have been associated with malignancy, they may represent novel targets for developing innovative therapeutic tools to treat different solid and blood tumors.

View Article and Find Full Text PDF
Article Synopsis
  • * One selective antibody fragment, C12, was developed into a full IgG and was shown to bind effectively to ADAM17, preventing the activation of cancer cell pathways by inhibiting EGFR phosphorylation.
  • * C12 demonstrated anti-tumor effects by reducing the viability of various EGFR-expressing cancer cells and inhibiting tumor growth in an ovarian cancer model, with imaging confirming its presence at tumor sites.
View Article and Find Full Text PDF

Genome-Wide Identification of the Gene Family in Poplar and Their Responses to Abiotic Stresses.

Life (Basel)

September 2024

College of Horticulture and Forestry Science, Hubei Engineering Technology Research Center for Forestry Information, Huazhong Agricultural University, Wuhan 430070, China.

Article Synopsis
  • - The gene family discussed is specific to plants and plays a crucial role in growth and stress responses, with 22 members identified in the analyzed organism's genome.
  • - Subcellular localization indicates these proteins are found in both the cell membrane and nucleus, with most containing only one of two conserved domains, and gene duplication analysis revealed fragment duplication as the primary mechanism.
  • - The study found that these genes show different expression patterns when exposed to various stress conditions, leading to the construction of a co-expression network that helps reveal their potential functions in processes like protein modification and hormone signaling in response to environmental stresses.
View Article and Find Full Text PDF

Mechanism of acid-sensing ion channel modulation by Hi1a.

J Gen Physiol

December 2024

Department of Pharmacology and Physiology, University of Rochester Medical Center, Rochester, NY, USA.

Acid-sensing ion channels (ASICs) are trimeric cation-selective channels activated by extracellular acidification. Amongst many pathological roles, ASICs are an important mediator of ischemic cell death and hence an attractive drug target for stroke treatment as well as other conditions. A peptide called Hi1a, isolated from Australian funnel web spider venom, inhibits ASIC1a and attenuates cell death in a stroke model up to 8 h after stroke induction.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!