Directed self-assembly of functionalized silica nanoparticles on molecular printboards through multivalent supramolecular interactions.

Langmuir

Laboratory for Supramolecular Chemistry and Technology, MESA+ Institute for Nanotechnology, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands.

Published: December 2004

Silica nanoparticles functionalized with beta-cyclodextrin (CD) host molecules (5) have been prepared by reacting carboxylic active ester-terminated silica nanoparticles (4) with CD heptamine. Silica nanoparticles functionalized with glucosamine (6), having similar surface properties as 5 but lacking the host-guest recognition motif, were used to perform blank experiments. The CD-functionalized silica nanoparticles 5 were determined by TEM to be 55 +/- 6 nm in size. They exhibited pH-dependent aggregation, which is explained by the presence of free amino and carboxylic acid groups on the particle surface, which was corroborated by zeta potential measurements. The functionalization with CD was further confirmed by host-guest studies in solution and at CD-functionalized silicon substrates. The addition of an adamantyl-terminated dendrimer, capable of multivalent host-guest binding with CD, led to strong aggregation of the CD particles 5, but not of the glucosamine-functionalized 6. Furthermore, 5 gave strong adsorption to CD monolayers on silicon onto which adamantyl-terminated dendrimers were adsorbed, whereas 6 did not. The good discrimination between dendrimer-covered and uncovered areas of the CD monolayer substrates allowed the directed self-assembly of the silica particles 5 onto dendrimer-patterned areas created by microcontact printing.

Download full-text PDF

Source
http://dx.doi.org/10.1021/la047982wDOI Listing

Publication Analysis

Top Keywords

silica nanoparticles
20
directed self-assembly
8
nanoparticles functionalized
8
silica
6
nanoparticles
5
self-assembly functionalized
4
functionalized silica
4
nanoparticles molecular
4
molecular printboards
4
printboards multivalent
4

Similar Publications

Background: Lenvatinib is an oral tyrosine kinase inhibitor that selectively inhib-its receptors involved in tumor angiogenesis and tumor growth. It is an emerging first-line treatment agent for hepatocellular carcinoma (HCC). However, there is no intravenous ad-ministration of Lenvatinib.

View Article and Find Full Text PDF

The differentiation of human induced pluripotent stem cells (hiPSCs) into neural progenitor cells (NPCs) is a promising approach for the treatment of neurodegenerative diseases and regenerative medicine. Dual-SMAD inhibition using small molecules has been identified as a key strategy for directing the differentiation of hiPSCs into NPCs by regulating specific cell signaling pathways. However, conventional culture methods are time-consuming and exhibit low differentiation efficiency in neural differentiation.

View Article and Find Full Text PDF

The application of mesoporous silica nanoparticles (MSN) as a drug carrier system got immense attention in the past few years due to their exceptional high drug loading efficiency. However, the process of drug loading is quite challenging compared to other lipid-based drug delivery systems. Hence, the MSNs using different catalysts were synthesized, and their mesoporous material characteristic was confirmed by the type IV adsorption-desorption isotherm using BET analyzer.

View Article and Find Full Text PDF

Purpose: Improving drug solubility is crucial in formulating poorly water-soluble drugs, especially for oral administration. The incorporation of drugs into mesoporous silica nanoparticles (MSN) is widely used in the pharmaceutical industry to improve physical stability and solubility. Therefore, this study aimed to elucidate the mechanism of poorly water-soluble drugs within MSN, as well as evaluate the impact on the dissolution and physical stability.

View Article and Find Full Text PDF

4T1 Cell Membrane Biomimetic Nanovehicle for Enhanced Breast Cancer Treatment.

ACS Med Chem Lett

January 2025

Key Laboratory of Biomedical Functional Materials, School of Science, China Pharmaceutical University, Nanjing 211198, China.

In this study, hollow mesoporous silica nanoparticles (HMSN) coated with a 4T1 tumor cell membrane were used to construct biomimetic nanomaterials (DTX@CHMSN) for the treatment of breast cancer. The nanodrug can improve the water solubility of polyenetaxel (DTX) by taking advantage of the special structure, good biocompatibility, and adjustable surface chemical properties of HMSN. Hollow mesoporous silica nanoparticles are coated with 4T1 cell membranes derived from homologous tumors (CHMSN).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!