Comparison of the expression patterns of five neural RNA binding proteins in the Xenopus retina.

J Comp Neurol

Laboratoire d'Embryologie Moléculaire et Expérimentale, Université Paris XI, CNRS UMR 8080, 91405 Orsay, France.

Published: January 2005

An increasing body of evidence indicates that gene expression can be modulated by posttranscriptional mechanisms. RNA binding proteins, for instance, control gene expression at many regulatory levels including RNA splicing, transport, stability, and translation. Although numerous RNA binding proteins have been identified, very few have been studied extensively in the context of developmental processes. We focused our study on five neural RNA binding proteins: one Musashi homolog, Nrp-1, one member of the Bruno gene family, BruL-1 (also known as Etr-1), and three members of the ELAV/Hu family, ElrB, ElrC, and ElrD. As an initial step in addressing their function during Xenopus neurogenesis, we used in situ hybridization to determine their expression patterns during retinal development. We found that RNA binding proteins belonging to different families have distinct spatio-temporal expression. These combinatorial expression patterns are reminiscent of previously described cell type-specific expression patterns of transcription factors during retinal development. The distribution of RNA binding proteins within the retina suggests that these regulators of posttranscriptional events may play important roles in multiple steps of retinogenesis.

Download full-text PDF

Source
http://dx.doi.org/10.1002/cne.20387DOI Listing

Publication Analysis

Top Keywords

rna binding
24
binding proteins
24
expression patterns
16
neural rna
8
gene expression
8
retinal development
8
rna
7
binding
6
proteins
6
expression
6

Similar Publications

Dysregulation of long non-coding RNAs (lncRNAs) is implicated in the pathophysiology of ischemic stroke (IS). However, the molecular mechanism of the lncRNA SERPINB9P1 in IS remains unclear. Our study aimed to explore the role and molecular mechanism of the lncRNA SERPINB9P1 in IS.

View Article and Find Full Text PDF

Transcriptional regulation of the piRNA pathway by Ovo in animal ovarian germ cells.

Genes Dev

December 2024

Cancer Research UK Cambridge Institute, Li Ka Shing Centre, University of Cambridge, Cambridge CB2 0RE, United Kingdom

The gene-regulatory mechanisms controlling the expression of the germline PIWI-interacting RNA (piRNA) pathway components within the gonads of metazoan species remain largely unexplored. In contrast to the male germline piRNA pathway, which in mice is known to be activated by the testis-specific transcription factor A-MYB, the nature of the ovary-specific gene-regulatory network driving the female germline piRNA pathway remains a mystery. Here, using as a model, we combined multiple genomics approaches to reveal the transcription factor Ovo as regulator of the germline piRNA pathway in ovarian germ cells.

View Article and Find Full Text PDF

Oscillation of the active form of the initiator protein DnaA (ATP-DnaA) allows for the timely regulation for chromosome replication. After initiation, DnaA-bound ATP is hydrolyzed, producing inactive ADP-DnaA. For the next round of initiation, ADP-DnaA interacts with the chromosomal locus DARS2 bearing binding sites for DnaA, a DNA-bending protein IHF, and a transcription activator Fis.

View Article and Find Full Text PDF

Background: N6-methyladenosine (m6A) is one of the most conserved internal RNA modifications, which has been implicated in many biological processes, such as apoptosis and proliferation. Wilms tumor 1-associating protein (WTAP), as a key component of m6A methylation, is a nuclear protein that has been associated with the regulation of proliferation and apoptosis. Rheumatoid arthritis (RA), a systemic, infiltrating autoimmune disease, is characterized by synovial hyperplasia.

View Article and Find Full Text PDF

Background: Resistance to multiple herbicides is common in Lolium rigidum. Here, resistance to acetolactate synthase (ALS)- and susceptibility to acetyl-CoA carboxylase (ACCase)-inhibiting herbicides was confirmed in a glyphosate-resistant L. rigidum population (NLR70) from Australia and the mechanisms of pyroxsulam resistance were examined.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!