Download full-text PDF

Source
http://dx.doi.org/10.1002/anie.200461722DOI Listing

Publication Analysis

Top Keywords

stereoselective synthesis
4
synthesis bicyclic
4
bicyclic pyrrolidines
4
pyrrolidines rhodium-catalyzed
4
rhodium-catalyzed cascade
4
cascade process
4
stereoselective
1
bicyclic
1
pyrrolidines
1
rhodium-catalyzed
1

Similar Publications

Palladium-Catalyzed Stereospecific Glycosylation Enables Divergent Synthesis of N-O-Linked Glycosides.

Org Lett

January 2025

Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Chemical Biology Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, People's Republic of China.

We present a versatile palladium-catalyzed glycosylation platform that enables facile access to structurally diverse N-O-linked glycosides with constantly excellent regio- and stereoselectivities. Importantly, this approach offers a broad substrate scope, low catalyst loadings, and outstanding chemoselectivity, allowing for the selective reaction of oximes/hydroximic acids over hydroxyl groups that would otherwise pose challenges in conventional glycosylation methods. The synthetic utility of this method is further exemplified through a range of synthetic transformations and late-stage modification of bioactive molecules.

View Article and Find Full Text PDF

A modular approach was developed for the first catalytic asymmetric total syntheses of naturally occurring C30 terpene quinone methides and their non-natural stereoisomers, which feature the presence of an unprecedented spiro[4.4]nonane-containing 6-6-6-5-5-3 hexacyclic skeleton. Resting on a chiral phosphinamide-catalyzed enantioselective reduction of 2,2-disubstituted cyclohexane-1,3-dione, a concise route for the synthesis of enantioenriched 6-6 bicyclic fragment was developed.

View Article and Find Full Text PDF

Ferric Chloride Mediated Dearomative Spirocyclization of Biaryl Ynones: Synthesis of 3,3-Spiroindanones.

Chem Asian J

January 2025

Indian Institute of Technology Guwahati, Chemistry, Department of Chemistry, Indian Institute of Technology Guwahati, 781039, Guwahati, INDIA.

Ferric chloride mediated dearomative spirocyclization of biaryl ynones for the synthesis of new series of densely functionalized 3,3-spiroindanone derivatives has been reported. This study is the first to describe the regioselective synthesis of a five-membered ring from biaryl ynones. The scope of the reaction is broad and the spirocyclic products were obtained in moderate to good yields (up to 87%) and with high stereoselectivities.

View Article and Find Full Text PDF

Interrupting Associative π-σ-π Isomerization Enables -Retentive Asymmetric Tsuji-Trost Reaction.

J Am Chem Soc

January 2025

New Cornerstone Science Laboratory, State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, China.

The asymmetric Tsuji-Trost reaction has been extensively studied due to its importance in establishing stereogenic centers, often adjacent to an -olefin moiety in organic molecules. The generally preferential formation of chiral -olefin products is believed to result from the thermodynamically more stable -π-allylpalladium intermediate. The rapid associative π-σ-π isomerization makes it challenging to synthesize chiral -olefin products via the transient -π-allylpalladium intermediate.

View Article and Find Full Text PDF

Chiral heterocyclic alcohols and amines are frequently used building blocks in the synthesis of fine chemicals and pharmaceuticals. Herein, we report a one-pot photoenzymatic synthesis route for -Boc-3-amino/hydroxy-pyrrolidine and -Boc-4-amino/hydroxy-azepane with up to 90% conversions and >99% enantiomeric excess. The transformation combines a photochemical oxyfunctionalization favored for distal C-H positions with a stereoselective enzymatic transamination or carbonyl reduction step.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!