Spatial and temporal distribution of imidacloprid and thiamethoxam in citrus and impact on Homalodisca coagulata populations.

Pest Manag Sci

USDA-ARS Western Cotton Laboratory, 4135 E Broadway Road, Phoenix, AZ 85040, USA.

Published: January 2005

Titers of two systemic neonicotinoid insecticides in citrus trees were measured in conjunction with conventional evaluations of their impact on glassy-winged sharpshooter (Homalodisca coagulata (Say); GWSS) populations. Xylem fluid samples were collected at regular intervals and from multiple locations within field-grown citrus trees to determine imidacloprid and thiamethoxam concentrations using commercial ELISA kits. Uptake profiles varied considerably with peak mean titers of imidacloprid occurring 6-8 weeks after application compared with 2 weeks for thiamethoxam. The persistence of each compound also varied as near-peak levels of imidacloprid were sustained for another 6-10 weeks before gradually declining. In contrast, thiamethoxam titers declined more rapidly after the initial peak, possibly reflecting an application rate only one-quarter of that used for imidacloprid. Within-tree distributions were more similar for the two compounds, with no significant effect due to height of the sample (upper or lower half) or to the quadrant location within the tree, with the exception of one quadrant in the thiamethoxam-treated trees. Substantial reductions in GWSS nymphs and adults were observed in imidacloprid-treated trees during the 2001 trial and were sustained for 4-5 months after treatment. Treatment effects on nymphs were not as well pronounced in the 2002 trial, when overall GWSS infestations were much reduced from the previous year. However, consistently lower adult infestations were still observed in 2002 for both treatments compared with untreated trees. Information on the spatial and temporal profiles in citrus trees was obtained for both compounds to complement field impact data and improve understanding of their pest management potential.

Download full-text PDF

Source
http://dx.doi.org/10.1002/ps.949DOI Listing

Publication Analysis

Top Keywords

citrus trees
12
spatial temporal
8
imidacloprid thiamethoxam
8
homalodisca coagulata
8
trees
6
imidacloprid
5
temporal distribution
4
distribution imidacloprid
4
thiamethoxam
4
citrus
4

Similar Publications

The citrus red mite (CRM), Panonychus citri (McGregor) (Acari: Tetranychidae), a worldwide pest chiefly infesting Citrus plants, has spread from Southern China to Northern China. Little information is known about the population performance of CRM on the plants except for citrus trees and pear trees. In order to evaluate the extent of damage might caused by CRM to the fruit trees cultivated in Northern China, the performance of CRM on four Rosaceae species, including three main fruit tree species (pear-Pyrus pyrifolia Nakai cv.

View Article and Find Full Text PDF

The chloroplast (cp) genome is a widely used tool for exploring plant evolutionary relationships, yet its effectiveness in fully resolving these relationships remains uncertain. Integrating cp genome data with nuclear DNA information offers a more comprehensive view but often requires separate datasets. In response, we employed the same raw read sequencing data to construct cp genome-based trees and nuclear DNA phylogenetic trees using Read2Tree, a cost-efficient method for extracting conserved nuclear gene sequences from raw read data, focusing on the Aurantioideae subfamily, which includes Citrus and its relatives.

View Article and Find Full Text PDF

The species complex (FLSC) currently comprises 11 phylogenetic species, including accepted names such as , , and , which have mostly been reported in association with citrus and coffee. Many varieties were documented by Wollenweber & Reinking (1935), which is indicative of a wider diversity of species within this group. The lack of type material in some cases, especially for the older names, means that definition by molecular phylogeny is very difficult.

View Article and Find Full Text PDF

Molecular data should be combined with morphological data to enhance the reliability of phylogenetic and diagnostic studies on nematodes. In this study, the citrus nematode collected from citrus orchards in different localities in Fars province, southern Iran, was characterized using the partial sequencing of ITS rDNA, D2-D3 of 28S rDNA and COI mtDNA genes. We also morphometrically characterized the second-stage juveniles (J2) and male specimens.

View Article and Find Full Text PDF

Genetic and physiological characteristics of edited citrus and their impact on HLB tolerance.

Front Genome Ed

December 2024

Department of Horticultural Sciences, Citrus Research and Education Center, University of Florida, Lake Alfred, FL, United States.

Article Synopsis
  • Huanglongbing (HLB) disease, triggered by the bacterium Liberibacter asiaticus, poses a serious threat to citrus production with no existing cure, making the development of resistant cultivars essential.
  • Researchers focused on the NONEXPRESSOR OF PATHOGENESIS-RELATED GENES (NPR) family, specifically modifying NPR1 and NPR3 genes in sweet orange trees to improve HLB resistance.
  • The genome-edited sweet orange varieties showed enhanced vigor compared to wild-type trees under greenhouse conditions, suggesting that targeted gene editing can help in developing HLB-tolerant citrus plants, although further field tests are required to confirm these results.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!