Associations among biological objects such as genes, proteins, and drugs can be discovered automatically from the scientific literature. TransMiner is a system for finding associations among objects by mining the Medline database of the scientific literature. The direct associations among the objects are discovered based on the principle of co-occurrence in the form of an association graph. The principle of transitive closure is applied to the association graph to find potential transitive associations. The potential transitive associations that are indeed direct are discovered by iterative retrieval and mining of the Medline documents. Those associations that are not found explicitly in the entire Medline database are transitive associations and are the candidates for hypothesis generation. The transitive associations were ranked based on the sum of weight of terms that co-occur with both the objects. The direct and transitive associations are visualized using a graph visualization applet. TransMiner was tested by finding associations among 56 breast cancer genes and among 24 objects in the calpain signal transduction pathway. TransMiner was also used to rediscover associations between magnesium and migraine.

Download full-text PDF

Source
http://dx.doi.org/10.1007/BF02254372DOI Listing

Publication Analysis

Top Keywords

transitive associations
24
associations
12
associations biological
8
biological objects
8
scientific literature
8
finding associations
8
associations objects
8
mining medline
8
medline database
8
association graph
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!