Actin, one of the most highly conserved and abundant eukaryotic proteins, is constantly being polymerized and depolymerized within cells as part of cellular motility, tissue formation and repair, and embryonic development. Many proteins exist that bind to monomeric or filamentous (F) forms of actin to regulate the polymerization state. It has become increasingly apparent that the ability of different proteins to bind to and regulate actin filament dynamics depends on the ability of the filament to exist in altered conformations. Yet, little is known about how these conformational changes occur at the molecular level. We have destabilized F-actin filaments by forming a disulfide that locks the "hydrophobic plug" to the body of the actin subunit or by altering the C terminus of actin with a tetramethylrhodamine label. We also examined F-actin filaments at short times after the initiation of polymerization. In all three cases, a substantial fraction of protomers can be found in a "tilted" state that also is induced by actin depolymerizing factor/cofilin proteins. These observations suggest that F-actin filaments are annealed over time into a stable filament and that actin-depolymerizing proteins can effect a time reversal of polymerization.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC539747PMC
http://dx.doi.org/10.1073/pnas.0407525102DOI Listing

Publication Analysis

Top Keywords

f-actin filaments
12
time reversal
8
reversal polymerization
8
actin
6
proteins
5
actin-destabilizing factors
4
factors disrupt
4
filaments
4
disrupt filaments
4
filaments time
4

Similar Publications

Energy-based modelling of single actin filament polymerization using bond graphs.

J R Soc Interface

January 2025

Department of Biomedical Engineering, Faculty of Engineering & Information Technology, University of Melbourne, Melbourne, Victoria 3010, Australia.

Bond graphs provide an energy-based methodology for modelling complex systems hierarchically; at the moment, the method allows biological systems with both chemical and electrical subsystems to be modelled. Herein, the bond graph approach is extended to include chemomechanical transduction thus extending the range of biological systems to be modelled. Actin filament polymerization and force generation is used as an example of chemomechanical transduction, and it is shown that the (transformer) bond graph component provides a practical, and conceptually simple, alternative to the Brownian ratchet approach of Peskin, Odell, Oster and Mogilner.

View Article and Find Full Text PDF

is a pathogen that causes sporadic cases and outbreaks of diarrhea. The main virulence feature of this bacterium is the attaching and effacing (AE) lesion formation on infected intestinal epithelial cells, which is characterized by the formation of pedestal-like structures that are rich in F-actin. The Brazilian 1551-2 strain can recruit F-actin using both the Nck-dependent and the Nck-independent pathways, the latter of which uses an adaptor protein named Tir-cytoskeleton coupling protein (TccP/EspF).

View Article and Find Full Text PDF

Cellular actin networks exhibit distinct assembly and disassembly dynamics, primarily driven by multicomponent reactions occurring at the two ends of actin filaments. While barbed ends are recognized as the hotspot for polymerization, depolymerization is predominantly associated with pointed ends. Consequently, mechanisms promoting barbed-end depolymerization have received relatively little attention.

View Article and Find Full Text PDF

TBC1D20 coordinates vesicle transport and actin remodeling to regulate ciliogenesis.

J Cell Biol

April 2025

Department of Genetics and Cell Biology, College of Life Sciences, State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, China.

TBC1D20 deficiency causes Warburg Micro Syndrome in humans, characterized by multiple eye abnormalities, severe intellectual disability, and abnormal sexual development, but the molecular mechanisms remain unknown. Here, we identify TBC1D20 as a novel Rab11 GTPase-activating protein that coordinates vesicle transport and actin remodeling to regulate ciliogenesis. Depletion of TBC1D20 promotes Rab11 vesicle accumulation and actin deconstruction around the centrosome, facilitating the initiation of ciliogenesis even in cycling cells.

View Article and Find Full Text PDF

An actin-binding protein, known as Calponin 3 (CNN3), modulates the remodeling of the actin cytoskeleton, a fundamental process for the maintenance of skeletal muscle homeostasis. Although the roles of CNN3 in actin remodeling have been established, its biological significance in myoblast differentiation remains largely unknown. This study investigated the functional significance of CNN3 in myogenic differentiation, along with its effects on actin remodeling and mechanosensitive signaling in C2C12 myoblasts.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!