The mechanisms by which diet-induced obesity is associated with insulin resistance are not well established, and no study has until now integrated, in a temporal manner, functional insulin action data with insulin signaling in key insulin-sensitive tissues, including the hypothalamus. In this study, we evaluated the regulation of insulin sensitivity by hyperinsulinemic-euglycemic clamp procedures and insulin signaling, c-jun N-terminal kinase (JNK) activation and insulin receptor substrate (IRS)-1(ser307) phosphorylation in liver, muscle, adipose tissue, and hypothalamus, by immunoprecipitation and immunoblotting, in rats fed on a Western diet (WD) or control diet for 10 or 30 d. WD increased visceral adiposity, serum triacylglycerol, and insulin levels and reduced whole-body glucose use. After 10 d of WD (WD10) there was a decrease in IRS-1/phosphatidylinositol 3-kinase/protein kinase B pathway in hypothalamus and muscle, associated with an attenuation of the anorexigenic effect of insulin in the former and reduced glucose transport in the latter. In WD10, there was an increased glucose transport in adipose tissue in parallel to increased insulin signaling in this tissue. After 30 d of WD, insulin was less effective in suppressing hepatic glucose production, and this was associated with a decrease in insulin signaling in the liver. JNK activity and IRS-1(ser307) phosphorylation were higher in insulin-resistant tissues. In summary, the insulin resistance induced by WD is tissue specific and installs first in hypothalamus and muscle and later in liver, accompanied by activation of JNK and IRS-1(ser307) phosphorylation. The impairment of the insulin signaling in these tissues, but not in adipose tissue, may lead to increased adiposity and insulin resistance in the WD rats.

Download full-text PDF

Source
http://dx.doi.org/10.1210/en.2004-0767DOI Listing

Publication Analysis

Top Keywords

insulin signaling
24
insulin
16
insulin resistance
12
irs-1ser307 phosphorylation
12
adipose tissue
12
western diet
8
signaling c-jun
8
c-jun n-terminal
8
n-terminal kinase
8
insulin receptor
8

Similar Publications

Efficacy of cartilage-targeted IGF-1 in a mouse model of growth hormone insensitivity.

Front Endocrinol (Lausanne)

January 2025

Section on Growth and Development, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institute of Health, Bethesda, MD, United States.

Recombinant human IGF-1 is used to treat severe primary IGF-1 deficiency, but this treatment requires twice-daily injection, often does not fully correct the growth deficit, and has important off-target effects. We therefore sought to target IGF-1 to growth plate cartilage by generating fusion proteins combining IGF-1 with single-chain human antibody fragments that target matrilin-3, a cartilage matrix protein. We previously showed that this cartilage-targeting IGF-1 fusion protein (CV1574-1) promoted growth plate function in a GH-deficient (lit) mouse model.

View Article and Find Full Text PDF

Xylooligosaccharide and Akkermansia muciniphila synergistically ameliorate insulin resistance by reshaping gut microbiota, improving intestinal barrier and regulating NKG2D/NKG2DL signaling in gestational diabetes mellitus mice.

Food Res Int

February 2025

Department of Nutrition and Food Hygiene, NMPA Key Laboratory for Safety Evaluation of Cosmetics, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, 1026. Shatai South Road, Guangzhou 510515, Guangdong, PR China; Department of Clinical Nutrition, Nanfang Hospital, Southern Medical University, 1838. Guangzhou Avenue North, Guangzhou 510515, Guangdong, PR China. Electronic address:

Xylooligosaccharides (XOS) ameliorate insulin resistance (IR) in gestational diabetes mellitus (GDM) probably by propagating Akkermansia muciniphila (Akk). This study aimed to investigate the effects and mechanisms of XOS, Akk and combination on IR in GDM mice/pseudo-germ-free (PGF) mice. Female mice were fed with AIN-93 (n = 19) and high fat diet (HFD) (n = 206).

View Article and Find Full Text PDF

JAK inhibitors: a new choice for diabetes mellitus?

Diabetol Metab Syndr

January 2025

Department of Cardiology, Zibo Central Hospital, No. 10, South Shanghai Road, Zibo, People's Republic of China.

Altered tyrosine kinase signaling is associated with a variety of diseases. Tyrosine kinases can be classified into two groups: receptor type and nonreceptor type. Nonreceptor-type tyrosine kinases are subdivided into Janus kinases (JAKs), focal adhesion kinases (FAKs) and tec protein tyrosine kinases (TECs).

View Article and Find Full Text PDF

Dental pulp stem cell-derived intracellular vesicles prevent orthodontic relapse by inhibiting PI3K/Akt/NF-κB-mediated osteoclast activity.

Stem Cell Res Ther

January 2025

State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, NO.237, Luo Yu Road, Hongshan District, Wuhan City, 430079, China.

Background: Orthodontic relapse, the undesired deviation of teeth from their corrected positions, remains a significant challenge in clinical orthodontics. Incomplete periodontal bone remodeling has been identified as a key factor in this process. Despite decades of research, currently there are no effective strategies to prevent relapse.

View Article and Find Full Text PDF

Gut Microbiota-Bone Axis.

Ann Nutr Metab

January 2025

Department of Translational Medical Science, University of Naples Federico II, Napoli, Italy.

Background: Knowledge of the complex interplay between gut microbiota and human health is gradually increasing as it has just recently been a field of such great interest.

Summary: Recent studies have reported that communities of microorganisms inhabiting the gut influence the immune system through cellular responses and shape many physiological and pathophysiological aspects of the body, including muscle and bone metabolism (formation and resorption). Specifically, the gut microbiota affects skeletal homeostasis through changes in host metabolism, the immune system, hormone secretion, and the gut-brain axis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!