The signaling cascades governing neuronal migration are believed to link extracellular signals to cytoskeletal components. MAP1B is a neuron-specific microtubule-associated protein implicated in the control of the dynamic stability of microtubules and in the cross-talk between microtubules and actin filaments. Here we show that Reelin can induce mode I MAP1B phosphorylation, both in vivo and in vitro, through gsk3 and cdk5 activation. Additionally, mDab1 participates in the signaling cascade responsible for mode I MAP1B phosphorylation. Conversely, MAP1B-deficient mice display an abnormal structuring of the nervous system, especially in brain laminated areas, indicating a failure in neuronal migration. Therefore, we propose that Reelin can induce post-translational modifications on MAP1B that could correlate with its function in neuronal migration.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1093/cercor/bhh213 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!