A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Analysis of distinct tartrate-resistant acid phosphatase promoter regions in transgenic mice. | LitMetric

AI Article Synopsis

  • The study investigates the tartrate-resistant acid phosphatase (TRAP) gene, which shows different expression patterns in various tissues, pointing to the existence of alternative mRNA transcripts driven by distinct promoters.
  • Transgenic mice were created using two candidate promoters (BC and C); the BC promoter showed strong expression across multiple tissues, while the C promoter did not show significant expression in vivo or vitro.
  • The findings indicate that the expression of bone- and spleen-preferred TRAP transcripts relies on regulatory elements beyond the BC and C promoters, highlighting the complexity of transcriptional regulation in osteoclast gene expression.

Article Abstract

The tartrate-resistant acid phosphatase (TRAP) is present in multiple tissues, including kidney, liver, lung, spleen, and bone. Recent study of (TRAP) gene expression has provided evidence for distinct promoters within the (TRAP) gene, suggesting that the gene has alternative, tissue-preferred mRNA transcripts. Examination of endogenous (TRAP) exon 1B and 1C mRNA transcripts revealed tissue-preferred transcript abundance with increased exon 1B transcripts detected in liver and kidney and increased exon 1C transcripts detected in bone and spleen. In this investigation, we have made transgenic mice that express a marker gene driven by two candidate promoters, designated BC and C, within the (TRAP) gene. The BC and C promoters are 2.2 and 1.6 kb, respectively, measured from the translation initiation site. Evaluation of BC transgenic lines demonstrated robust expression in multiple tissues. In contrast, significant transgene expression was not detected in C transgenic lines. Evaluation of transgene mRNAs in BC transgenic lines revealed that virtually all expression was in the form of B transcripts, suggesting that the tissue-preferred pattern of endogenous (TRAP) was not replicated in the BC transgenic line. Likewise, osteoclastogenic cultures from BC, but not C, transgenic bone marrow cells expressed the transgene following receptor activator of NFkappaB ligand/macrophage colony-stimulating factor stimulation. In conclusion, when compared with the 2.2-kb BC portion of the (TRAP) promoter region, the 1.6-kb C portion does not account for significant gene expression in vivo or in vitro; production of the bone- and spleen-preferred (TRAP) C transcript must depend on regulatory elements outside of the 2.2-kb promoter. As the majority of currently investigated transcription factors that influence transcriptional regulation of osteoclast gene expression bind within the 1.6-kb C portion of the (TRAP) promoter, it is likely that transcription binding sites outside of the 2.2-kb region will have profound effects on regulation of the gene in vivo and in vitro.

Download full-text PDF

Source
http://dx.doi.org/10.1074/jbc.M409052200DOI Listing

Publication Analysis

Top Keywords

trap gene
12
gene expression
12
transgenic lines
12
trap
9
tartrate-resistant acid
8
acid phosphatase
8
transgenic mice
8
multiple tissues
8
gene
8
mrna transcripts
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!