Purpose: A2-E is the dominant fluorophore of lipofuscin in the retinal pigment epithelium. In an in-vitro setup, we determined the temperature-dependent changes of the A2-E fluorescence with the aim of also assessing the potential value of such measurements for determining retinal temperature by autofluorescence measurements during laser treatment.
Methods: A2-E was biosynthesized and diluted in Dimethyl Sulfoxide (DMSO) to 1 microM. Fluorescence measurements were performed with a photospectrometer under various temperatures ranging from 20 degrees C to 75 degrees C. Autofluorescence was excited at 467 nm, and emission was detected around 632 nm.
Results: A2-E fluorescence intensity showed a linear decrease concomitant with temperature increment. At 75 degrees C, the fluorescence intensity decreased by 43% compared to at 20 degrees C. Fluorescence intensity was completely reversible dependent on the temperature, which cannot be explained by thermal A2-E alteration.
Conclusions: If the A2-E temperature-dependent fluorescence in-vitro is transferable to human fundus auto-fluorescence, then it may be possible to apply an autofluorescence-based online detection device for noninvasive determination of fundus temperature during in vivo laser treatment. This is of clinical relevance, especially for the application of photodynamic therapy (PDT) and transpupillary thermotherpy (TTT).
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1080/02713680490516846 | DOI Listing |
Luminescence
January 2025
Department of Chemistry, College of Science, Jouf University, Sakaka, Aljouf, Saudi Arabia.
In the present study, a norfloxacin (NFX) fluorescent probe was tailored for the spectrofluorometric measurement of cefepime (CFP). The proposed approach measured the quenching effect of CFP on the fluorescence intensity of NFX in acetate buffer solution. The obtained results show that CFP strongly quenches the fluorescence of NFX in a static mechanism.
View Article and Find Full Text PDFAnticancer Agents Med Chem
January 2025
Laboratory Animal Center, Affiliated Hospital of Chengde Medical University, Chengde, Hebei, 067000, P.R. China.
Objective: The objective of this study is to examine the impact of KW-2478 combined with DDP on colorectal cancer cells both in vitro and in vivo and to elucidate the molecular mechanism of KW-2478 in colorectal cancer.
Methods: qRT-PCR and Western blot were employed to assess HSP90 mRNA and protein expression in normal intestinal epithelial and colorectal cancer cells. DLD-1 and HCT116 were selected for the experiment.
Biomed Opt Express
January 2025
School of Physical Science and Information Technology, Liaocheng University, Liaocheng 252059, China.
Accurate and efficient determination of malachite green (MG) in aquaculture is crucial for ensuring environment and food safety. Herein, we present a dual-response fluorescence probe based on an Ag/PMMA/Eu nanocomposite for the sensitive detection of MG with low concentration and single droplet. The luminescence properties of the Ag/PMMA/Eu nanocomposite and the fluorescence resonance energy transfer (FRET) effect between Eu and MG are significantly improved due to the localized surface plasmon resonance (LSPR) effect.
View Article and Find Full Text PDFNarra J
December 2024
Research Group of Pharmaceutics, School of Pharmacy, Institut Teknologi Bandung, Bandung, Indonesia.
Zebrafish serve as a pivotal model for bioimaging and toxicity assessments; however, the toxicity of banana peel-derived carbon dots in zebrafish has not been previously reported. The aim of this study was to assess the toxicity of carbon dots derived from banana peel in zebrafish, focusing on two types prepared through hydrothermal and pyrolysis methods. Banana peels were synthesized using hydrothermal and pyrolysis techniques and then compared for characteristics, bioimaging ability, and toxicity in zebrafish as an animal model.
View Article and Find Full Text PDFSuper-resolution optical fluctuation imaging (SOFI) rapidly generates super-resolution images by analyzing fluorescence intensity fluctuations. However, fluorophores for high-order SOFI applications are very rare. Here, we report ultrasmall semiconducting polymer dots (Pdots) to achieve high-order SOFI at single-particle and cellular levels.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!