"Reconstructed" gill epithelia on filter supports were grown in primary culture from dispersed gill cells of freshwater rainbow trout (Oncorhynchus mykiss). This preparation contains both pavement cells and chloride cells, and after 7-9 days in culture, permits exposure of the apical surface to true freshwater while maintaining blood-like culture media on the basolateral surface, and exhibits a stable transepithelial resistance (TER) and transepithelial potential (TEP) under these conditions. These epithelia were used to develop a possible in vitro version of the biotic ligand model (BLM) for silver; the in vivo BLM uses short-term gill binding of the metal to predict acute silver toxicity as a function of freshwater chemistry. Radio-labeled silver ((110m)Ag as AgNO(3)) was placed on the apical side (freshwater), and the appearance of (110m)Ag in the epithelia (binding) and in the basolateral media (flux) over 3 h were monitored. Silver binding (greater than the approximate range 0-100 mug l(-1)) and silver flux were concentration-dependent with a 50% saturation point (apparent K(d)) value of about 10 mug l(-1) or 10(-7) M, very close to the 96-h LC50 in vivo in the same water chemistry. There were no adverse effects of silver on TER, TEP, or Na(+), K(+)-ATPase activity, though the latter declined over longer exposures, as in vivo. Silver flux over 3 h was small (<20%) relative to binding, and was insensitive to water chemistry. However, silver binding was decreased by elevations in freshwater Na(+) and dissolved organic carbon (humic acid) concentrations, increased by elevations in freshwater Cl(-) and reductions in pH, and insensitive to elevations in Ca(2+). With the exception of the pH response, these effects were qualitatively and quantitatively similar to in vivo BLM responses. The results suggest that an in vitro BLM approach may provide a simple and cost-effective way for evaluating the protective effects of site-specific waters.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.taap.2004.06.003 | DOI Listing |
Integr Environ Assess Manag
January 2025
NiPERA, Durham, North Carolina, USA.
Environmental Quality Standards (EQS) derived under the European Water Framework Directive are legally binding and enshrined in individual European Member State Country national legislation. These EQS are derived following well-established guidance documents. In 2013, EQS for nickel were derived for freshwaters to be protective against long and short-term exposures, at 4 and 34 µg L-1, respectively.
View Article and Find Full Text PDFEnviron Toxicol Chem
January 2025
ARCHE Consulting, Ghent, Belgium.
This study aimed to develop a bioavailability-based effects assessment method for nickel (Ni) to derive acute freshwater environmental thresholds in Europe. The authors established a reliable acute freshwater Ni ecotoxicity database covering 63 different freshwater species, and the existing acute Ni bioavailability models for invertebrates were revised. A single average invertebrate bioavailability model was proposed, in which the protective effects of Ca2+ and Mg2+ on Ni2+ toxicity were integrated as a single-site competition effect at the Ni biotic ligand.
View Article and Find Full Text PDFNat Commun
December 2024
Phytopathology, TUM School of Life Sciences, Technical University of Munich, Freising, Germany.
Plant endogenous signaling peptides shape growth, development and adaptations to biotic and abiotic stress. Here, we identify C-TERMINALLY ENCODED PEPTIDEs (CEPs) as immune-modulatory phytocytokines in Arabidopsis thaliana. Our data reveals that CEPs induce immune outputs and are required to mount resistance against the leaf-infecting bacterial pathogen Pseudomonas syringae pv.
View Article and Find Full Text PDFEcotoxicol Environ Saf
January 2025
Life Sciences, Hamburg University of Applied Science, Ulmenliet 20, Hamburg D-21033, Germany.
Dev Cell
November 2024
Taishan Academy of Tomato Innovation, Shandong Agricultural University, Tai'an, Shandong 271018, China; Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China; College of Life Sciences, Shandong Agricultural University, Tai'an 271018, China; College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an 271018, China. Electronic address:
Pattern recognition receptor (PRR)-mediated perception of damage-associated molecular patterns (DAMPs) triggers the first line of inducible defenses in both plants and animals. Compared with animals, plants are sessile and regularly encounter physical damage by biotic and abiotic factors. A longstanding problem concerns how plants achieve a balance between wound defense response and normal growth, avoiding overcommitment to catastrophic defense.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!