The goal of the present study was to provide neurochemical evidence for a shift in the functional balance between the nigrostriatal and mesolimbic pathway in favour of the mesolimbic pathway by investigating the effects of a partial, nigral, bilateral 6-hydroxydopamine lesion on basal and novelty-induced extracellular dopamine release in the accumbens of Low responder rats to novelty (LR). Low responders were chosen because the above-mentioned shift was seen in LR rats, but not in rats that have a high response to novelty (HR). About 1 microg/microl of 6-hydroxydopamine was injected bilaterally into the substantia nigra pars compacta and a guide cannula was placed into the right accumbens. Changes in extracellular dopamine in response to novelty, a new cage, were measured using a microdialysis probe inserted into the accumbens. The lesion size was determined by quantification of tyrosine hydroxylase immunoreactivity of the substantia nigra and the ventral tegmental area. This revealed that the lesion partly destroyed the dopaminergic cells of the nigrostriatal pathway, thereby relatively sparing the dopaminergic cells of the mesolimbic pathway. The lesion significantly increased the amount of extracellular dopamine in the accumbens during both basal and novelty conditions. We suggest that the experimentally induced neuronal death in the substantia nigra pars compacta with subsequent removal of lateral inhibition of adjacent neurons underlies the observed changes in the amount of extracellular dopamine in the accumbens.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.expneurol.2004.09.004 | DOI Listing |
Front Cell Neurosci
January 2025
The Research Center for Brain Function and Medical Engineering, Asahikawa Medical University, Asahikawa, Japan.
The evolution of brain-expressed genes is notably slower than that of genes expressed in other tissues, a phenomenon likely due to high-level functional constraints. One such constraint might be the integration of information by neuron assemblies, enhancing environmental adaptability. This study explores the physiological mechanisms of information integration in neurons through three types of synchronization: chemical, electromagnetic, and quantum.
View Article and Find Full Text PDFThe concentrations of extracellular and intracellular signaling molecules, such as dopamine and cAMP, change over both fast and slow timescales and impact downstream pathways in a cell-type specific manner. Fluorescence sensors currently used to monitor such signals are typically optimized to detect fast, relative changes in concentration of the target molecule. They are less well suited to detect slowly-changing signals and rarely provide absolute measurements of either fast and slow signaling components.
View Article and Find Full Text PDFZhejiang Da Xue Xue Bao Yi Xue Ban
January 2025
School of Medicine, Hangzhou City University, Zhejiang Provincial Key Laboratory of Novel Targets and Drug Study for Neural Repair, Hangzhou 310015, China.
Objectives: To investigate the protective effects and underlying mechanisms of extract on motor dysfunction in mouse model of Parkinson's disease (PD).
Methods: Eighty C57BL/6 male mice were randomly divided into five groups: control group, PD model group, levodopa treatment group (positive control group), low-dose GP treatment group (LD-GP group), and high-dose GP treatment group (HD-GP group), with 16 mice per group. The PD model was induced by injection of 6-hydroxydopamine into the substantia nigra pars reticulata in mice of last 5 groups.
Dis Mon
January 2025
NYU Grossman School of Medicine, Department of Population Health, New York, NY, USA.
3,4-methylenedioxymethamphetamine (MDMA; commonly referred to as "ecstasy" or "molly") is a substituted amphetamine drug that is used recreationally for its acute psychoactive effects, including euphoria and increased energy, as well as prosocial effects such as increased empathy and feelings of closeness with others. Acute adverse effects can include hyperthermia, dehydration, bruxism, and diaphoresis. Post-intoxication phenomena may include insomnia, anhedonia, anxiety, depression, and memory impairment, which can persist for days following drug cessation.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
Faculty of Pharmacy, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Osaka 920-1192, Japan.
G protein-coupled receptors (GPCRs) are essential cell surface proteins involved in transducing extracellular signals into intracellular responses, regulating various physiological processes. This study validated the use of the Tango assay, a sensitive method for detecting GPCR activation, in Schneider 2 (S2) cells, focusing on the human Dopamine Receptor D4 (DRD4). Plasmids encoding the LexA-tagged human DRD4 receptor and a luciferase reporter were co-transfected into S2 cells and stimulated with dopamine.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!