Aggregates differing in size and phytoplankton community composition were sampled in winter/spring 2001 and summer 1997 and 2002 (during mucilaginous event) in the northern Adriatic Sea. The fatty acid profiles (FAME) were determined in aggregates, bacterial population was grown from each aggregate and each bacterial isolate from aggregate's plated cultures. All aggregates irrespective of the season, aggregate size or phytoplankton community composition contained isolates from three distinct groups, with fatty acid profiles corresponding to alpha-Proteobacteria, gamma-Proteobacteria and Cytophaga-Flavobacter (CF) complex but in different relative proportions. Fatty acid profiles of the bacterial population grown from each aggregate revealed either the domination of one group (gamma, alpha or CF) or contribution of more groups (gamma and CF; alpha and CF). Specifically, as the aggregates age a shift in favor of bacteria belonging to CF-complex and corresponding decrease in bacteria similar to that of Proteobacteria occur. During the aggregate aging process and degradation of the mucous matrix, besides bacterial succession, the phytoplankton growth took place inside the aggregates. Such an aging pattern was confirmed through laboratory experiments with aggregates inhabited by the diatom Cylindrotheca closterium.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.scitotenv.2004.05.029 | DOI Listing |
Sci Rep
December 2024
Molecular Biology and Genetics Laboratory (LGBM), UFMS - Federal University of Mato Grosso do Sul, Três Lagoas, Brazil.
Sickle cell anemia (SCA) is a monogenic blood disease with complex and multifactorial pathophysiology. The endocannabinoid system (ECS) could be a candidate for modulating SCA complications, such as priapism, as it has demonstrated an essential role in hematopoiesis, platelet aggregation, and immune responses. We evaluated the association of ECS-related single nucleotide polymorphisms (SNP) (FAAH rs324420, MAGL rs604300, CNR1 rs7766029, and CNR2 rs35761398) with priapism in a Brazilian SCA cohort.
View Article and Find Full Text PDFSci Rep
December 2024
School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima, 30000, Thailand.
Effector proteins secreted via the type III secretion system (T3SS) of nitrogen-fixing rhizobia are key determinants of symbiotic compatibility in legumes. Previous report revealed that the T3SS of Bradyrhizobium sp. DOA9 plays negative effects on Arachis hypogaea symbiosis.
View Article and Find Full Text PDFNPJ Sci Food
December 2024
College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, China.
Medium- and long-chain triacylglycerols (MLCTs) are regarded as healthy premium oils; however, the health benefits of novel MLCTs enriched with lauric and α-linolenic acids are still not fully understood. This study examined the health benefits of lauric-α-linolenic structural lipids (ALSL) and physical mixture (PM) with a similar fatty acid composition in mice with obesity induced by the high-fat diet (HFD). The data indicated that ALSL is more effective than PM in counteracting obesity, insulin resistance, hyperlipidaemia, liver injury, and systemic inflammation in HFD-induced mice.
View Article and Find Full Text PDFSci Rep
December 2024
Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, University of Pittsburgh, Pittsburgh, PA, USA.
E-cigarette/vaping-associated lung injury (EVALI) is strongly associated with vitamin E acetate and often occurs with concomitant tetrahydrocannabinol (THC) use. To uncover pathways associated with EVALI, we examined cytokines, transcriptomic signatures, and lipidomic profiles in bronchoalveolar lavage fluid (BALF) from THC-EVALI patients. At a single center, we prospectively enrolled mechanically ventilated patients with EVALI from THC-containing products (N = 4) and patients with non-vaping acute lung injury and airway controls (N = 5).
View Article and Find Full Text PDFNat Commun
December 2024
Department of Orthodontics, Peking University School and Hospital of Stomatology, Beijing, China.
The potential for mitigating intestinal inflammation through the gut-bone axis in the treatment of osteoporosis is significant. While various gut-derived postbiotics or bacterial metabolites have been created as dietary supplements to prevent or reverse bone loss, their efficacy and safety still need improvement. Herein, a colon-targeted drug delivery system is developed using surface engineering of polyvinyl butyrate nanoparticles by shellac resin to achieve sustained release of postbiotics butyric acid at the colorectal site.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!