Drosophila Wee1 kinase regulates Cdk1 and mitotic entry during embryogenesis.

Curr Biol

Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, CO 80309-0347, USA.

Published: December 2004

Cyclin-dependent kinases (Cdks) are the central regulators of the cell division cycle. Inhibitors of Cdks ensure proper coordination of cell cycle events and help regulate cell proliferation in the context of tissues and organs. Wee1 homologs phosphorylate a conserved tyrosine to inhibit the mitotic cyclin-dependent kinase Cdk1. Loss of Wee1 function in fission or budding yeast causes premature entry into mitosis. The importance of metazoan Wee1 homologs for timing mitosis, however, has been demonstrated only in Xenopus egg extracts and via ectopic Cdk1 activation . Here, we report that Drosophila Wee1 (dWee1) regulates Cdk1 via phosphorylation of tyrosine 15 and times mitotic entry during the cortical nuclear cycles of syncytial blastoderm embryos, which lack gap phases. Loss of maternal dwee1 leads to premature entry into mitosis, mitotic spindle defects, chromosome condensation problems, and a Chk2-dependent block of subsequent development, and then embryonic lethality. These findings modify previous models about cell cycle regulation in syncytial embryos and demonstrate that Wee1 kinases can regulate mitotic entry in vivo during metazoan development even in cycles that lack a G2 phase.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3242732PMC
http://dx.doi.org/10.1016/j.cub.2004.11.050DOI Listing

Publication Analysis

Top Keywords

mitotic entry
12
drosophila wee1
8
regulates cdk1
8
cell cycle
8
wee1 homologs
8
premature entry
8
entry mitosis
8
mitotic
5
entry
5
wee1
5

Similar Publications

Epstein-Barr virus (EBV), an oncogenic gamma-herpesvirus, belongs to group 1 carcinogen and is implicated in various cancers, including gastric cancer. Aurora Kinase A is a major mitotic protein kinase that regulates mitotic progression; overexpression and hyperactivation of AURKA commonly promote genomic instability in many tumours. However, the relationship of functional residues of AURKA and EBV in gastric cancer progression remains unknown.

View Article and Find Full Text PDF

The DNA damage response (DDR) mechanisms that allow cells to tolerate DNA replication stress are critically important for genome stability and cell viability. Using an unbiased genetic screen we identify a role for the RING finger E3 ubiquitin ligase RNF25 in promoting DNA replication stress tolerance. In response to DNA replication stress, RNF25-deficient cells generate aberrantly high levels of single-stranded DNA (ssDNA), accumulate in S-phase and show reduced mitotic entry.

View Article and Find Full Text PDF

Colorectal cancer (CRC) constitutes the second leading cause of cancer-related death worldwide and advanced CRCs are resistant to targeted therapies, chemotherapies and immunotherapies. p38α (Mapk14) has been suggested as a therapeutic target in CRC; however, available p38α inhibitors only allow for insufficient target inhibition. Here we describe a unique class of p38α inhibitors with ultralong target residence times (designated ULTR-p38i) that robustly inhibit p38α downstream signaling and induce distinct biological phenotypes.

View Article and Find Full Text PDF

CAMSAP2 is required for bridging fiber assembly to ensure mitotic spindle assembly and chromosome segregation in human epithelial Caco-2 cells.

PLoS One

January 2025

Department of Life Science and Medical Bioscience, Laboratory of Cytoskeletal Logistics, Graduate School of Advanced Science and Engineering, Waseda University, Shinjuku, Tokyo, Japan.

In mammalian epithelial cells, cytoplasmic microtubules are mainly non-centrosomal, through the functions of the minus-end binding proteins CAMSAP2 and CAMSAP3. When cells enter mitosis, cytoplasmic microtubules are reorganized into the spindle composed of both centrosomal and non-centrosomal microtubules. The function of the CAMSAP proteins upon spindle assembly remains unknown, as these do not exhibit evident localization to spindle microtubules.

View Article and Find Full Text PDF

Chronological lifespan (CLS) in budding yeast Saccharomyces cerevisiae, which is defined as the time nondividing cells in saturation remain viable, has been utilized as a model to study post-mitotic aging in mammalian cells. CLS is closely related to entry into and maintenance of a quiescent state. Many rearrangements that direct the quiescent state enhance the ability of cells to endure several types of stress.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!