Interferon-beta (IFN-beta), an approved drug for multiple sclerosis (MS), acts on dendritic cells (DC) by suppressing IL-12p40 and increasing IL-10. This results in Th2-biased immune responses. The nature of IFN-beta-modulated DC remains elusive. Previously, we observed that IFN-beta dose dependently induces expression of CD123, i.e., a classical marker for plasmacytoid DC, on human blood monocyte-derived myeloid DC. Such IFN-beta-modulated DCs produce predominantly IL-10 but are IL-12 deficient, with potent Th2 promotion. In the present study, we further characterize IFN-beta-modulated DC by using recently identified blood DC antigens (BDCA), and investigate their ability to produce type I IFN in response to virus stimulation. We show that IFN-beta induces development of CD123+ DC from human blood monocytes, which coexpress BDCA4+ but are negative for BDCA2-, a specific marker for plasmacytoid DC. Such IFN-beta-modulated DC can produce IL-6 and IL-10 but not IL-12p40, and have no enhanced IFN-alpha and IFN-beta production. The findings indicate that IFN-beta-modulated DCs represent a myeloid DC subset with diminished CD11c, BDCA-1 and CD1a expression. They may promote Th2 and B cell differentiation through IL-6 and IL-10 production, and suppression of IL-12p40, but they have no enhanced antiviral capacity.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jneuroim.2004.08.014DOI Listing

Publication Analysis

Top Keywords

il-6 il-10
12
multiple sclerosis
8
dendritic cells
8
produce il-6
8
marker plasmacytoid
8
human blood
8
ifn-beta-modulated dcs
8
il-12p40 enhanced
8
il-10
5
ifn-beta-modulated
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!