The expression of RANTES and chemokine receptors in the brains of scrapie-infected mice.

J Neuroimmunol

Ilsong Institute of Life Science, Hallym University, 1605-4 Kwanyangdong, Dongangu, Anyang, Kyeonggi-Do 431-060, Republic of Korea.

Published: January 2005

While chemokines play an important role in host defense, it has become abundantly clear that their expression is not solely restricted to immune cells. In this study, to investigate the role of chemokines in pathogenic mechanism of neurodegeneration in prion diseases, we determined the cerebral expression of RANTES, a major chemoattractant of monocytes and activated lymphocytes, and its receptors CCR1, CCR3 and CCR5 in ME7 scrapie-infected mice. The mRNA of RANTES gene was upregulated in the brains of scrapie-infected mice. Intense immunoreactivity of RANTES was observed only in glial fibrillary acidic protein (GFAP)-positive astrocytes of the hippocampus of the infected mice. In addition, the levels of mRNA expression of CCR1, CCR3, and CCR5 were increased in hippocampus of scrapie-infected brains compared to the values in controls. Immunostaining of CCR1, CCR3, and CCR5 was observed in reactive astrocytes of the hippocampal region of scrapie-infected brains. In addition, immunoreactivity of CCR5 was also observed in microglia of scrapie-infected brains. These results suggest that RANTES and its receptors may participate in amplifying proinflammatory responses and, thereby, exacerbate the neurodegeneration of prion diseases.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jneuroim.2004.08.010DOI Listing

Publication Analysis

Top Keywords

scrapie-infected mice
12
ccr1 ccr3
12
ccr3 ccr5
12
scrapie-infected brains
12
expression rantes
8
brains scrapie-infected
8
neurodegeneration prion
8
prion diseases
8
ccr5 observed
8
scrapie-infected
6

Similar Publications

Activation of IP10/CXCR3 Signaling is Highly Coincidental with PrP Deposition in the Brains of Scrapie-Infected Mice.

Biomed Environ Sci

November 2024

National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, NHC Key Laboratory for Medical Virology and Viral Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China;Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Zhejiang University, Hangzhou 100084, Zhejiang, China;Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan 430071, Hubei, China;China Academy of Chinese Medical Sciences, Beijing 100700, China;Shanghai Institute of Infectious Disease and Biosafety, Shanghai 200003, China.

Objective: To analyze the relationship between Chemokine IP10 and its receptor CXCR3 during prion infection.

Methods: We investigated the increases in IP10 signals, primarily localized in neurons within the brains of scrapie-infected mice, using western blotting, ELISA, co-immunoprecipitation, immunohistochemistry, immunofluorescence assays, and RT-PCR.

Results: Both CXCR3 levels and activation were significantly higher in the brains of scrapie-infected mice and prion-infected SMB-S15 cells.

View Article and Find Full Text PDF

Aberrance of GAP43/p-GAP43 Closely Associates with the Pathology of Neuron Loss in Prion-Infected Rodent Models.

Mol Neurobiol

October 2024

National Key-Laboratory of Intelligent Tracking and Forecasting for Infectious Disease, NHC Key Laboratory of Medical Virology and Viral Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases (Zhejiang University), National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China.

Prion diseases are fatal neurodegenerative disorders characterized by neuron damage and loss. Growth-associated protein 43 (GAP43) functions in neuronal plasticity and synaptic function, but its role in prion diseases is not fully elucidated. In this study, we investigated the changes of GAP43 in the central nerve system (CNS) of several prion-infected rodent models and explored the potential relationship of GAP43 with PrP deposit and neuron loss using various methods.

View Article and Find Full Text PDF

Introduction: Prion diseases are deadly neurodegenerative disorders in both animals and humans, causing the destruction of neural tissue and inducing behavioral manifestations. Heat shock proteins (Hsps), act as molecular chaperones by supporting the appropriate folding of proteins and eliminating the misfolded proteins as well as playing a vital role in cell signaling transduction, cell cycle, and apoptosis control. SW02 is a potent activator of Hsp 70 kDa (Hsp70).

View Article and Find Full Text PDF

Aberrant Enhanced NLRP3 Inflammasomes and Cell Pyroptosis in the Brains of Prion-Infected Rodent Models Are Largely Associated with the Proliferative Astrocytes.

Mol Neurobiol

November 2024

National Key-Laboratory of Intelligent Tracking and Forecasting for Infectious Disease, NHC Key Laboratory of Medical Virology and Viral Diseases, Chinese Center for Disease Control and Prevention, National Institute for Viral Disease Control and Prevention, Beijing, China.

Neuroinflammation is a common pathological feature in a number of neurodegenerative diseases, which is mediated primarily by the activated glial cells. Nucleotide-binding oligomerization domain-like receptor pyrin domain-containing-3 (NLRP3) inflammasome-associated neuroinflammatory response is mostly considered. To investigate the situation of the NLRP3-related inflammation in prion disease, we assessed the levels of the main components of NLRP3 inflammasome and its downstream biomarkers in the scrapie-infected rodent brain tissues.

View Article and Find Full Text PDF

Increased Gal-3 Mediates Microglia Activation and Neuroinflammation via the TREM2 Signaling Pathway in Prion Infection.

ACS Chem Neurosci

October 2023

National Key-Laboratory of Intelligent Tracing and Forecasting for Infectious Disease, NHC Key Laboratory of Medical Virology and Viral Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China.

Galectin 3 (Gal-3) is one of the major elements for activating microglia and mediating neuroinflammation in some types of neurodegenerative diseases. However, its role in the pathogenesis of prion disease is seldom addressed. In this study, markedly increased brain Gal-3 was identified in three scrapie-infected rodent models at the terminal stage.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!