A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Long-term intermittent compressive stimulation improves the composition and mechanical properties of tissue-engineered cartilage. | LitMetric

Long-term intermittent compressive stimulation improves the composition and mechanical properties of tissue-engineered cartilage.

Tissue Eng

CIHR-BioEngineering of Skeletal Tissues Team, Department of Pathology and Laboratory Medicine and Samuel Lunenfeld Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada.

Published: April 2005

Tissue engineering of articular cartilage is a promising alternative for cartilage repair. However, it has been difficult to develop tissue in vitro that mimicks native cartilage. Cartilaginous tissue formed in vitro does not accumulate enough extracellular matrix, is deficient in collagen, and possesses only a fraction of the mechanical properties of native cartilage. In this study, we investigated whether long-term intermittent compressive stimulation would improve the quality of the generated tissue. Chondrocyte cultures were established on the surface of porous calcium polyphosphate substrates and allowed to form cartilaginous tissue. In vitro-formed tissues were subjected to different stimulation protocols for 1 week. The optimal mechanical stimulation parameters identified in this short-term study were then applied to the cultures for up to 4 weeks. Mechanical stimulation applied at a 5% compressive amplitude at a frequency of 1 Hz for 400 cycles every second day resulted in the greatest increase in collagen synthesis (37 +/- 9% over control) while not significantly affecting proteoglycan synthesis (2 +/- 8% over control). This condition, applied to the chondrocyte cultures for 4 weeks, resulted in a significant increase in the amount of tissue that formed (stimulated, 2.4 +/- 0.2 mg dry wt; unstimulated, 1.61 +/- 0.08 mg dry wt). Stimulated tissues contained approximately 40% more collagen (stimulated, 590 +/- 58 microg; unstimulated, 420 +/- 42 microg), and 30% more proteoglycans (stimulated, 393 +/- 34 microg; unstimulated, 302 +/- 32 microg) as well as displaying a 2- to 3-fold increase in compressive mechanical properties (maximal equilibrium stress: stimulated, 10 +/- 1 kPa; unstimulated, 5 +/- 1 kPa; maximal equilibrium modulus: stimulated, 80 +/- 23 kPa; unstimulated, 24 +/- 6 kPa). The results of this study demonstrate that intermittent mechanical stimulation can increase collagen synthesis and, when applied over a 4-week period, can accelerate extracellular matrix accumulation as well as improve the material properties of the developed tissue. Interestingly, only short periods of mechanical stimulation (6 min every second day) were needed to affect the quality of cartilaginous tissue formed in vitro.

Download full-text PDF

Source
http://dx.doi.org/10.1089/ten.2004.10.1633DOI Listing

Publication Analysis

Top Keywords

mechanical stimulation
16
+/- microg
16
+/- kpa
16
mechanical properties
12
cartilaginous tissue
12
tissue formed
12
+/-
12
stimulated +/-
12
long-term intermittent
8
intermittent compressive
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!