The design and synthesis of a series of seven tricyclic 6-methylidene penems as novel class A and C serine beta-lactamase inhibitors is described. These compounds proved to be very potent inhibitors of the TEM-1 and AmpC beta-lactamases and less so against the class B metallo-beta-lactamase CcrA. In combination with piperacillin, their in vitro activities enhanced susceptibility of all class C resistant strains from various bacteria. Crystallographic structures of a serine-bound reaction intermediate of 17 with the class A SHV-1 and class C GC1 enzymes have been established to resolutions of 2.0 and 1.4 A, respectively, and refined to R-factors equal 0.163 and 0.145. In both beta-lactamases, a seven-membered 1,4-thiazepine ring has formed. The stereogenic C7 atom in the ring has the R configuration in the SHV-1 intermediate and has both R and S configurations in the GC1 intermediate. Hydrophobic stacking interactions between the tricyclic C7 substituent and a tyrosine side chain, rather than electrostatic or hydrogen bonding by the C3 carboxylic acid group, dominate in both complexes. The formation of the 1,4- thiazepine ring structures is proposed based on a 7-endo-trig cyclization.

Download full-text PDF

Source
http://dx.doi.org/10.1021/jm049680xDOI Listing

Publication Analysis

Top Keywords

6-methylidene penems
8
beta-lactamase inhibitors
8
crystallographic structures
8
class
5
structure-activity relationship
4
relationship 6-methylidene
4
penems bearing
4
bearing tricyclic
4
tricyclic heterocycles
4
heterocycles broad-spectrum
4

Similar Publications

Mycobacterium tuberculosis is intrinsically resistant to most β-lactam antibiotics because of the constitutive expression of the blaC-encoded β-lactamase. This enzyme has extremely high activity against penicillins and cephalosporins, but weaker activity against carbapenems. The enzyme can be inhibited by clavulanate, avibactam, and boronic acids.

View Article and Find Full Text PDF

The catalytic efficiency of class D β-lactamases depends critically on an unusual carboxylated lysine as the general base residue for both the acylation and deacylation steps of the enzyme. Microbiological and biochemical studies on the class D β-lactamases OXA-1 and OXA-24 showed that the two enzymes behave differently when reacting with two 6-methylidene penems (penem 1 and penem 3): the penems are good inhibitors of OXA-1 but act more like substrates for OXA-24. UV difference and Raman spectroscopy revealed that the respective reaction mechanisms are different.

View Article and Find Full Text PDF

Ambler position 105 in class A β-lactamases is implicated in resistance to clavulanic acid, although no clinical isolates with mutations at this site have been reported. We hypothesized that Y105 is important in resistance to clavulanic acid because changes in positioning of the inhibitor for ring oxygen protonation could occur. In addition, resistance to bicyclic 6-methylidene penems, which are interesting structural probes that inhibit all classes of serine β-lactamases with nanomolar affinity, might emerge with substitutions at position 105, especially with nonaromatic substitutions.

View Article and Find Full Text PDF

Currently, CTX-M β-lactamases are among the most prevalent and most heterogeneous extended-spectrum β-lactamases (ESBLs). In general, CTX-M enzymes are susceptible to inhibition by β-lactamase inhibitors. However, it is unknown if the pathway to inhibition by β-lactamase inhibitors for CTX-M ESBLs is similar to TEM and SHV β-lactamases and why bacteria possessing only CTX-M ESBLs are so susceptible to carbapenems.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!