Studies in Wistar rats in conditions of free behavior showed that low-frequency stimulation of the paleocerebellar cortex (nodulus, uvula) (10-12 Hz, 0.5 msec) was accompanied by activation of spike discharges induced by systematic application of benzylpenicillin sodium (3,000,000 IU/kg). Facilitation of the formation of ictal discharges was also seen. High-frequency electrical stimulation (100-300 Hz, 0.25 msec) of the same structure was accompanied by suppression of the generation of spike potentials and prevented the development of ictal potentials. The antiepileptic effect of electrical stimulation was seen in conditions of relatively low levels of convulsive activity. Electrical stimulation decreased the frequency and amplitude of spike potentials in the interstimulus intervals and decreased the total duration of epileptic foci. Repeated electrical stimulation of the paleocerebellum after electrocoagulation did not produce any changes in convulsive activity.

Download full-text PDF

Source
http://dx.doi.org/10.1023/b:neab.0000038130.04373.52DOI Listing

Publication Analysis

Top Keywords

electrical stimulation
20
convulsive activity
12
stimulation paleocerebellar
8
paleocerebellar cortex
8
spike potentials
8
stimulation
6
effects electrical
4
cortex penicillin-induced
4
penicillin-induced convulsive
4
activity rats
4

Similar Publications

Introduction: Available therapies for peripheral nerve injury (PNI) include surgical and non-surgical treatments. Surgical treatment includes neurorrhaphy, grafting (allografts and autografts) and tissue-engineered grafting (artificial nerve guide conduits), while non-surgical treatment methods include electrical stimulation, magnetic stimulation, laser phototherapy and administration of nerve growth factors. However, the treatments currently available to best manage the different PNI manifestations remain undetermined.

View Article and Find Full Text PDF

Background: Interventricular dyssynchrony derived from the classic non-physiological stimulation (n-PS) of the right ventricle (RV) is a known cause of left ventricular dysfunction (LVDys).

Methods: This was a prospective descriptive single-center study. We analyzed patients who develop LVDys with n-PS, and the results after upgrading to conduction system pacing (CSP).

View Article and Find Full Text PDF

Introduction: Electrical stimulation (E-stim) can reduce the impact of complications, like spasticity, bladder dysfunction in people with spinal cord injuries (SCIs), enhancing quality of life and health outcomes. With SCI prevalence high in regional Australia and a shift towards home-based community integrated care, the perspectives of people with SCI and healthcare professionals on current and future use of E-stim home-devices are needed.

Methods: A mixed-methods concurrent triangulation approach was used.

View Article and Find Full Text PDF

Background: Exercise-induced hypoalgesia (EIH) is characterized by a reduction in pain perception and sensitivity across both exercising and non-exercising body parts during and after a single bout of exercise. EIH is mediated through central and peripheral mechanisms; however, the specific effect of muscle contraction alone on EIH remains unclear. Moreover, previous studies on electrical muscle stimulation (EMS) have primarily focused on local analgesic effects, often relying on subjective pain reports.

View Article and Find Full Text PDF

Deep brain stimulation (DBS), a proven treatment for movement disorders, also holds promise for the treatment of psychiatric and cognitive conditions. However, for DBS to be clinically effective, it may require DBS technology that can alter or trigger stimulation in response to changes in biomarkers sensed from the patient's brain. A growing body of evidence suggests that such adaptive DBS is feasible, it might achieve clinical effects that are not possible with standard continuous DBS and that some of the best biomarkers are signals from the cerebral cortex.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!