Four canine melanoma cell lines were established from the subcutaneous, oral gingival and mucosal melanoma tissues at the primary and metastatic sites. These cell lines were designated as CMeC-1, CMeC-2, KMeC and LMeC. The cells were spindles in shape, similar to that of primary tumor cells. The doubling times of these cells ranged from 34.1 +/- 5.61 to 57.9 +/- 3.28 hr and their chromosome number ranged from 46 to 80. When transplanted into nude mice, CMeC-1 and LMeC produced tumors, whereas CMeC-2 and KMeC did not. The morphology of the tissue formed by xenotransplantation of these cells was similar to their primary tumors.

Download full-text PDF

Source
http://dx.doi.org/10.1292/jvms.66.1437DOI Listing

Publication Analysis

Top Keywords

cell lines
12
canine melanoma
8
melanoma cell
8
cmec-2 kmec
8
establishment characterization
4
characterization canine
4
lines canine
4
lines established
4
established subcutaneous
4
subcutaneous oral
4

Similar Publications

Background: Most patients initially diagnosed with non-muscle invasive bladder cancer (NMIBC) still have frequent recurrence after urethral bladder tumor electrodesiccation supplemented with intravesical instillation therapy, and their risk of recurrence is difficult to predict. Risk prediction models used to predict postoperative recurrence in patients with NMIBC have limitations, such as a limited number of included cases and a lack of validation. Therefore, there is an urgent need to develop new models to compensate for the shortcomings and potentially provide evidence for predicting postoperative recurrence in NMIBC patients.

View Article and Find Full Text PDF

Pan-Cancer Analysis Identifies YKT6 as a Prognostic and Immunotherapy Biomarker, with an Emphasis on Cervical Cancer.

Onco Targets Ther

January 2025

Department of Gynecology, Sichuan Provincial Hospital of Traditional Chinese Medicine, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province, People's Republic of China.

Background: Soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE)-mediated membrane fusion is crucial for autophagy, making YKT6, a key modulator of cell membrane fusion, a potential target for cancer therapy. However, its oncogenic role across different cancers remains unclear. This study was to investigate the prognostic value and potential immunological functions of YKT6, including cervical squamous cell carcinoma and endocervical adenocarcinoma (CESC).

View Article and Find Full Text PDF

FXYD6 is transcriptionally activated by KLF10 to suppress the aggressiveness of gastric cancer cells.

Cytotechnology

April 2025

The First College of Clinical Medical Science, Yichang Central People's Hospital, China Three Gorges University, Yichang, 443000 China.

Despite improvements in therapeutic approaches, the mortality rate of gastric cancer (GC) remains unacceptably high. Evidence suggests that FXYD domain containing ion transport regulator 6 (FXYD6) is downregulated in GC. However, its exact function and the molecular mechanism in GC are still unclear.

View Article and Find Full Text PDF

Targeting tumor angiogenesis with safe endogenous protein inhibitors is a promising therapeutic approach despite the plethora of the first line of emerging chemotherapeutic drugs. The extracellular matrix network in the blood vessel basement membrane and growth factors released from endothelial and tumor cells promote the neovascularization which supports the tumor growth. Contrastingly, small cleaved cryptic fragments of the C-terminal non collagenous domains of the same basement membrane display antiangiogenic effect.

View Article and Find Full Text PDF

Genes and proteins expression profile of 2D vs 3D cancer models: a comparative analysis for better tumor insights.

Cytotechnology

April 2025

University Centre for Research and Development, University Institute of Pharmaceutical Sciences, Chandigarh University, Gharuan, Mohali, 140413 India.

When juxtaposed with 2D cell culture models, multicellular tumor spheroids demonstrate a capacity to faithfully replicate certain features inherent to solid tumors. These include spatial architecture, physiological responses, the release of soluble mediators, patterns of gene expression, and mechanisms of drug resistance. The morphological and behavioural similarities between 3D-cultured cells and cells within tumor masses highlight the potential of these models in studying cancer biology and drug responses.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!