Initial analysis of the phosphoproteome of Chinese hamster ovary cells using electrophoresis.

J Biomol Tech

Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT 84602, USA.

Published: December 2004

Protein phosphorylation is a common post-translational modification of enormous biological importance. Analysis of phosphorylation at the global level should shed light on the use of this modification to regulate metabolism, signal transduction, and other processes. We have begun a proteomic analysis of phosphorylation using two-dimensional gel electrophoresis. Chinese hamster ovary (CHO) cells were metabolically labeled using 32P-orthophosphate. The proteins were extracted and run on two-dimensional electrophoresis. Gels were stained using colloidal Coomassie stain, dried, and phosphorimaged. The Coomassie stain allowed the observation of 468 individual protein spots. The phosphorimage showed 181 spots. The phosphoproteome of CHO cells therefore comprises around one third as many proteins as the CHO cell abundance proteome. However, the most intense spots in the phosphoproteome usually do not correlate with intense spots in the abundance proteome. We investigated the effects of labeling time, finding that the number of observable spots increases but the relative intensities also change. We also investigated the effects of adding a phosphatase inhibitor during labeling. Finally, we evaluated a phosphoprotein-specific stain (Pro-Q Diamond) in comparison with radiolabeling methods. There is not perfect correlation between radiolabeled phosphoproteins and Pro-Q Diamond-stained phosphoproteins.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2291695PMC

Publication Analysis

Top Keywords

chinese hamster
8
hamster ovary
8
analysis phosphorylation
8
cho cells
8
coomassie stain
8
spots phosphoproteome
8
abundance proteome
8
intense spots
8
investigated effects
8
spots
5

Similar Publications

Preclinical evaluation of the potential PARP-imaging probe [carbonyl-C]DPQ.

EJNMMI Radiopharm Chem

January 2025

Division of Nuclear Medicine, Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Vienna, Austria.

Background: Poly (ADP-ribose) polymerase (PARP) enzymes are crucial for the repair of DNA single-strand breaks and have become key therapeutic targets in homologous recombination-deficient cancers, including prostate cancer. To enable non-invasive monitoring of PARP-1 expression, several PARP-1-targeting positron emission tomography (PET) tracers have been developed. Here, we aimed to preclinically investigate [carbonyl-C]DPQ as an alternative PARP-1 PET tracer as it features a strongly distinct chemotype compared to the frontrunners [F]FluorThanatrace and [F]PARPi.

View Article and Find Full Text PDF

The widespread application of pyraclostrobin (PYR), an important strobilurin fungicide with low utilization efficiency, urgently requires optimization for sustainable agriculture. In this study, nanoformulated PYR with nano-iron bismuthide (FeBi) was successfully prepared via flash nanoprecipitation, yielding spherical PYR/FeBi nanoparticles (NPs, Φ120 nm) with stable drug loading capacity (67.9%) and controlled release.

View Article and Find Full Text PDF

To evaluate the long-term efficacy and anamnestic response of Chinese hamster ovary (CHO) cell-derived hepatitis B vaccine (CHO-HepB) after 18-20 years, a cross-sectional survey was conducted in seven communities in Zhengding County at the end of 2017. The birth cohort 1997-1999 vaccinated primarily with three doses of CHO-HepB were enrolled in the survey. The HBV serological markers were quantified using the Chemiluminescence method.

View Article and Find Full Text PDF

Parainfluenza virus type 5 (PIV5) can cause either persistent or acute/lytic infections in a wide range of mammalian tissue culture cells. Here, we have generated PIV5 fusion (F)-expressing helper cell lines that support the replication of F-deleted viruses. As proof of the principle that F-deleted single-cycle infectious viruses can be used as safe and efficient expression vectors, we have cloned and expressed a humanized (Hu) version of the mouse anti-V5 tag antibody (clone SV5-Pk1).

View Article and Find Full Text PDF

Persistent Rhesus Enteric Calicivirus Infection in Recombinant CHO Cells Expressing the Coxsackie and Adenovirus Receptor.

Viruses

November 2024

Department of Veterinary Pathobiology, College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, TX 77843, USA.

Recently, using a panel of recombinant CHO cell lines, we identified the coxsackie and adenovirus receptor (CAR) and histo-blood group antigens (HBGAs) or sialic acid as the minimum requirement for susceptibility to rhesus enteric calicivirus (ReCV) infections. While ReCVs cause lytic infection in LLC-MK2 cells, recombinant CHO (rCHO) cell lines did not exhibit any morphological changes upon infection. To monitor infectious virus production, rCHO cell cultures had to be freeze-thawed and titrated on LLC-MK2 monolayers.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!