Unlabelled: Cardiac PET using (18)F-FDG under fasting conditions (fasting (18)F-FDG PET) is a promising technique for identification of cardiac sarcoidosis and assessment of disease activity. The aim of this study was to investigate the usefulness of fasting (18)F-FDG PET in detecting inflammatory lesions of cardiac sarcoidosis from a pathophysiologic standpoint.
Methods: Twenty-two patients with systemic sarcoidosis were classified into 2 groups of 11 each according to the presence or absence of sarcoid heart disease. Cardiac sarcoidosis was diagnosed according to the Japanese Ministry of Health and Welfare guidelines for diagnosing cardiac sarcoidosis with the exception of scintigraphic criteria. Nuclear cardiac imaging with fasting (18)F-FDG PET, (99m)Tc-methoxyisobutylisonitrile ((99m)Tc-MIBI) SPECT, and (67)Ga scintigraphy were performed in all patients. PET and SPECT images were divided into 13 myocardial segments and the standardized uptake value (SUV) of (18)F-FDG was calculated and defect scores (DS) for (99m)Tc-MIBI uptake were assessed for each segment. The total SUV (T-SUV) and total DS (TDS) were calculated as the sum of measurements for all 13 segments, and the diagnostic accuracy of fasting (18)F-FDG PET was compared with that of the other nuclear imaging modalities. In addition, pathophysiologic relationships between inflammatory activity and myocardial damage were examined by segmental comparative study using the SUV and DS.
Results: In patients with cardiac sarcoidosis, fasting (18)F-FDG PET revealed a higher frequency of abnormal myocardial segments than (99m)Tc-MIBI SPECT (mean number of abnormal segments per patient: 6.6 +/- 3.0 vs. 3.0 +/- 3.2 [mean +/- SD], P < 0.05). The sensitivity of fasting (18)F-FDG PET in detecting cardiac sarcoidosis was 100%, significantly higher than that of (99m)Tc-MIBI SPECT (63.6%) or (67)Ga scintigraphy (36.3%). The accuracy of fasting (18)F-FDG PET was significantly higher than (67)Ga scintigraphy. The T-SUV demonstrated a good linear correlation with serum angiotensin-converting enzyme levels (r = 0.83, P < 0.01), and the TDS showed a significant negative correlation with the left ventricular ejection fraction (r = -0.82, P < 0.01). In abnormal myocardial segments on the nuclear scan, the SUV showed a significant negative correlation with the DS (r = -0.63, P < 0.0001).
Conclusion: This study suggests that fasting (18)F-FDG PET can detect the early stage of cardiac sarcoidosis, in which fewer perfusion abnormalities and high inflammatory activity are noted, before advanced myocardial impairment.
Download full-text PDF |
Source |
---|
NPJ Aging
January 2025
Division of Cardiovascular Medicine, Department of Medicine, Kurume University School of Medicine, 67 Asahi-machi, Kurume, Japan.
We investigated clinical factors and biochemical markers associated with amygdalar metabolic activity evaluated by [F]-fluorodeoxyglucose-positron emission tomography (FDG-PET) in 346 subjects without a history of malignant neoplasms. Univariate regression analysis revealed significant relationships between amygdalar metabolic activity and fasting plasma glucose (FPG), glycated hemoglobin, coronary artery disease (CAD) history, aspirin use, oral hypoglycemic agents (OHAs) use, and asymmetric dimethylarginine (ADMA). In multiple stepwise regression analysis, FPG and CAD history were independently associated with amygdalar metabolic activity.
View Article and Find Full Text PDFMol Psychiatry
January 2025
Turku PET Centre, University of Turku, Turku, Finland.
Anorexia nervosa (AN) is a severe psychiatric disorder, characterized by restricted eating, fear to gain weight, and a distorted body image. Mu-opioid receptor (MOR) functions as a part of complex opioid system and supports both homeostatic and hedonic control of eating behavior. Thirteen patients with AN and thirteen healthy controls (HC) were included in this study.
View Article and Find Full Text PDFCardiovasc Diabetol
December 2024
Department of Clinical and Molecular Medicine, University of Rome-Sapienza, Rome, Italy.
Background: Increased whole blood viscosity (WBV) was associated with impaired peripheral glucose metabolism, type 2 diabetes, and cardiovascular disease (CVD). Impaired myocardial glucose metabolism is a risk factor for CVD. Whether an increased WBV is associated with impaired myocardial glucose metabolism is still undefined.
View Article and Find Full Text PDFMol Imaging Biol
December 2024
Cancer Research UK Cambridge Institute, Robinson Way, Cambridge, CB2 0RE, UK.
Purpose: In humans, 2-deoxy-2-[F]fluoro-D-glucose ([F]FDG) tumour-to-background contrast continues to increase long after a typical uptake period of 45 - 60 min. Similar studies have not been performed in mice and the static imaging time point for most studies is arbitrarily set at 30 - 60 min post-injection of [F]FDG. Ideally, static PET imaging should be performed after the initial period of rapid uptake but this period has not been defined in mice, with previous dynamic studies in mice being limited to 60 min.
View Article and Find Full Text PDFEJNMMI Res
October 2024
Department of Clinical Physiology, North Karelia Central Hospital, Joensuu, Finland.
Background: Inadequate myocardial glucose metabolism suppression (GMS) can hamper interpretation of cardiac [F]fluorodeoxyglucose (FDG) positron emission tomography (PET/CT). Use of β-hydroxybutyrate (BHB) measurement before [F]FDG injection has been proposed for predicting adequate GMS. However, limited information is available on BHB measurement in guiding preparations for [F]FDG-PET/CT.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!