Two chelating agents meso-2,3-dimercaptosuccinic acid (DMSA) and sodium 2,3-dimercapto-propane-1-sulphonate (DMPS) were tested for their efficiency in mercury removal from the body of rats in the presence and in the absence of selenium. Female Wistar rats were given a single intraperitoneal injection of mercuric chloride or an equimolar mixture of mercuric chloride and sodium selenite (1.5 micromol/kg body weight). The chelating agents were given orally, in excess (500 micromol DMSA/kg body weight; 300 micromol DMPS/kg body weight), 30 min after the administration of mercury and selenium. The animals were euthanized 24 h after the treatment and mercury in the kidney, liver, and 24 h urine was determined using cold vapour atomic absorption spectrometry (CV-AAS). The simultaneous administration of mercuric chloride and sodium selenite led to a redistribution of mercury in the organs, so that accumulation of mercury in the kidneys was decreased and in the liver increased. Selenite also caused decrease in the level of urinary mercury excretion. Both chelating agents were effective in mercury removal from the body, by increasing its urinary excretion. However, when animals were simultaneously treated with mercury and selenite, the rise of mercury excreted in the urine due to the treatment with chelating agents was lower when compared to animals receiving mercury without selenite. It is concluded that sodium selenite decreases the efficiency of DMSA and DMPS in mercury removal from the body of rats.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.toxlet.2004.08.014DOI Listing

Publication Analysis

Top Keywords

sodium selenite
16
mercuric chloride
16
chelating agents
16
mercury
12
mercury removal
12
removal body
12
body weight
12
simultaneous administration
8
dmsa dmps
8
dmps mercury
8

Similar Publications

Age-related cataract (ARC) remains the leading cause of blindness worldwide. Sagittaria sagittifolia polysaccharide (SSP) extract, a key component of Sagittaria sagittifolia L., exhibits anti-oxidant and anti-apoptotic effects with potential applications in ARC.

View Article and Find Full Text PDF

Chondroitin sulfate (CS), a class of glycosaminoglycans covalently attached to proteins to form proteoglycans, is widely distributed in the extracellular matrix and cell surface of animal tissues. In our previous study, CS was used as a template for the synthesis of seleno-chondroitin sulfate (SeCS) through the redox reaction of ascorbic acid (Vc) and sodium selenite (NaSeO) and we found that SeCS could inhibit tumor cell proliferation and invasion. However, its effect on angiogenesis and its underlying mechanism are unknown.

View Article and Find Full Text PDF

Selenium enrichment enhances the alleviating effect of GG on alcoholic liver injury in mice.

Curr Res Food Sci

December 2024

Department of Hepatopancreatobiliary Surgery, Fujian Research Institute of Abdominal Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, 350005, PR China.

Selenium-enriched probiotics have attracted much attention due to the physiological activities of both probiotics and selenium (organic selenium). In this study, we investigated the mitigating effect of selenium-enriched GG (LGG@Se) and its pathway on alcohol-induced liver injury (ALI) in mice. The results showed that LGG@Se was superior to LGG and sodium selenite in alleviating ALI.

View Article and Find Full Text PDF

Date seed polysaccharides were utilized to synthesize selenium nanoparticles (MPS-NP) through a redox reaction involving sodium selenite and ascorbic acid. Characterization of MPS-NP showed a uniform, amorphous, spherical shape with a particle size of 89.2 nm, remaining stable for 42 days.

View Article and Find Full Text PDF

This study focuses on the effects of different levels of sodium selenite on the growth, selenium content, and antioxidant capacity of black soldier fly (Hermetia illucens). The experiment used different doses of sodium selenite for treatment, including a basic diet with no supplements (control) and diets supplemented with 10 mg/kg (Se10), 20 mg/kg (Se20), 30 mg/kg (Se30), and 40 mg/kg (Se40) sodium selenite, and results show that sodium selenite supplementation significantly increases selenium content and improves selenium utilization and antioxidant capacity (P < 0.05).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!