Lipophilic carbocyanine dyes are effective neuronal tracers in fixed tissue. However, their application has been limited by the slow diffusion, short tracing distances, and long durations of incubation in fixed tissue. We used applied dc electric fields, that exerted forces on the cationic dyes, to increase the diffusion velocity and maximal tracing distances of DiI and its analogs. Maximum diffusion distances of DiI in fixed human peripheral nerve were approximately 4 times longer then the previous reported maximum, and diffusion velocities was approximately 100 times faster in samples exposed to the electric field than in control samples. This method enabled retrograde tracing from a distal nerve branch into a proximal nerve trunk, and did not result in lateral transaxonal diffusion. Field enhanced diffusion will expand the range of uses of lipophilic dyes in fixed tissues and enable topographic mapping of peripheral nerve fascicles in post-mortem tissue.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jneumeth.2004.06.011DOI Listing

Publication Analysis

Top Keywords

fixed tissue
12
applied electric
8
electric fields
8
diffusion
8
increase diffusion
8
dii fixed
8
tracing distances
8
distances dii
8
maximum diffusion
8
peripheral nerve
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!