Degradability is often a critical property of materials utilized in tissue engineering. Although alginate, a naturally derived polysaccharide, is an attractive material due to its biocompatibility and ability to form hydrogels, its slow and uncontrollable degradation can be an undesirable feature. In this study, we characterized gels formed using a combination of partial oxidation of polymer chains and a bimodal molecular weight distribution of polymer. Specifically, alginates were partially oxidized to a theoretical extent of 1% with sodium periodate, which created acetal groups susceptible to hydrolysis. The ratio of low MW to high MW alginates used to form gels was also varied, while maintaining the gel forming ability of the polymer. The rate of degradation was found to be controlled by both the oxidation and the ratio of high to low MW alginates, as monitored by the reduction of mechanical properties and corresponding number of crosslinks, dry weight loss, and molecular weight decrease. It was subsequently examined whether these modifications would lead to reduced biocompatibility by culturing C2C12 myoblast on these gels. Myoblasts adhered, proliferated, and differentiated on the modified gels at a comparable rate as those cultured on the unmodified gels. Altogether, this data indicates these hydrogels exhibit tunable degradation rates and provide a powerful material system for tissue engineering.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.biomaterials.2004.06.044 | DOI Listing |
Curr Nutr Rep
January 2025
Research and Development cell, Department of Intellectual property Rights, Lovely Professional University, Jalandhar- Delhi Grand Trunk Rd., Phagwara, Punjab, 144411, India.
Purpose Of Review: This review explores the mechanistic pathways and clinical implications of phytochemicals in obesity management, addressing the global health crisis of obesity and the pressing need for effective, natural strategies to combat this epidemic.
Recent Findings: Phytochemicals demonstrate significant potential in obesity control through various molecular mechanisms. These include the modulation of adipogenesis, regulation of lipid metabolism, enhancement of energy expenditure, and suppression of appetite.
Metab Brain Dis
January 2025
Department of Biochemistry, Faculty of Science, University of Yaoundé 1, P.O. Box 812, Yaounde, Cameroon.
Alzheimer's disease (AD) is associated with cognitive impairments which are linked to a deficit in cholinergic function. The objective of this study was to evaluate the ability of TeMac™ to prevent memory impairment in scopolamine-rats model of Alzheimer's disease and by in silico approaches to identify molecules in TeMac™ inhibiting acetylcholinesterase. The cholinergic cognitive dysfunction was induced by intraperitoneal injection of scopolamine (1 mg/kg daily) in male Wistar rats for seven consecutive days.
View Article and Find Full Text PDFNano Lett
January 2025
Faculty of Hepato-Pancreato-Biliary Surgery, The First Medical Center of Chinese People's Liberation Army (PLA) General Hospital, Beijing 100853, P. R. China.
Portal vein tumor thrombus (PVTT) is a poor prognostic factor for hepatocellular carcinoma (HCC) patients, highlighting the need for an oral drug delivery system that combines convenience, simplicity, biosafety, and improved patient compliance. Leveraging the unique anatomy of the portal vein and insights from single-cell RNA sequencing of the PVTT tumor microenvironment, we developed oral pellets using CaCO@PDA nanoparticles (NPs) encapsulating both doxorubicin hydrochloride and low molecular weight heparin. These NPs target the tumor thrombus microenvironment, aiming to break down the thrombus barrier and turn the challenge of portal vein blockage into an advantage by enhancing drug delivery efficiency through oral administration.
View Article and Find Full Text PDFEnviron Sci Process Impacts
January 2025
Massachusetts Institute of Technology, Department of Civil and Environmental Engineering, Parsons Laboratory, 15 Vassar Street, Cambridge, Massachusetts 02139, USA.
The high salinity and organic content in oil and gas wastewaters can cause ion suppression during liquid chromatography mass spectrometry (LC/MS) analysis, diminishing the sensitivity and accuracy of measurements in available methods. This suppression is severe for low molecular weight organic compounds such as ethanolamines (, monoethanolamine (MEA), diethanolamine (DEA), triethanolamine (TEA), -methyldiethanolamine (MDEA), and ,-ethyldiethanolamine (EDEA)). Here, we deployed solid phase extraction (SPE), mixed-mode LC, triple quadrupole MS with positive electrospray ionization (ESI), and a suite of stable isotope standards (, one per target compound) to correct for ion suppression by salts and organic matter, SPE losses, and instrument variability.
View Article and Find Full Text PDFWater Res X
May 2025
School of Environmental Science and Engineering, Shandong University, Qingdao, Shandong 266237, China.
Anaerobic ammonia oxidation (anammox) which converts nitrite and ammonium to dinitrogen gas is an energy-efficient nitrogen removal process. One of the bottlenecks for anammox application in wastewater treatment is the stable supply of nitrite for anammox bacteria. Dissimilatory nitrate reduction to ammonium (DNRA) is a process that converts nitrate to nitrite and then to ammonium.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!