The potential toxicity of metal ions in tissues surrounding metal-metal hip replacements is a cause for concern. Previous studies conducted in our laboratory demonstrated that Co(2+) and Cr(3+) induce TNF-alpha secretion in macrophages, as well as cell mortality. However, the degree of apoptosis and necrosis remained to be investigated. The aim of the present study was to quantify the rate of macrophage mortality by apoptosis vs. necrosis induced by Co(2+) and Cr(3+). J774 mouse macrophages were incubated in growth medium containing 0-10 ppm Co(2+) and 0-500 ppm Cr(3+) for 24 and 48 h under conventional cell culture conditions. Transmission electron microscopy, flow cytometry (Annexin-V fluorescein isothiocyanate/propidium iodide assay) and a specific cell death detection ELISA were used to illustrate cell death and differentiate between apoptotic and necrotic cells. Cell culture exposed to low concentrations of Co(2+) (0-6 ppm) revealed a low degree of mortality. In contrast, at the highest concentrations (8-10 ppm), late apoptosis occurred within 24 h. After 48 h, however, there was a clear evidence for an increase in the rate of necrosis while apoptosis occurred at much lower rate. Macrophages exposed to Cr(3+) demonstrated a predominance of apoptosis after 24h. At concentrations lower than 250 ppm, early and late apoptosis occurred at the same rate. At higher concentrations (250-500 ppm), the number of early apoptotic cells decreased in favor of late apoptosis. After 48 h, lower concentrations of Cr(3+) (150 ppm) induced a higher degree of early apoptosis than after 24 h, and some necrosis. At higher concentrations, the percentage of early apoptotic cells decreased, while necrosis became predominant over late apoptosis. In conclusion, this study demonstrates that macrophage mortality induced by metal ions depends on the type and concentration of metal ions as well as the duration of their exposure. Overall, apoptosis was predominant after 24 h with both Co(2+) and Cr(3+) ions, but high concentrations induced mainly necrosis at 48 h. These results point to the potential for these ions of inducing tissue damage by necrosis if present in large concentrations in vivo.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.biomaterials.2004.08.004 | DOI Listing |
Anticancer Agents Med Chem
January 2025
Department of Biology, Faculty of Science, Atatürk University, Erzurum, Turkey.
Introduction/objective: Several nutraceuticals, food, and cosmetic products can be developed using royal jelly. It is known for its potential health benefits, including its ability to boost the immune system and reduce inflammation. It is rich in vitamins, minerals, and antioxidants, which can improve general health.
View Article and Find Full Text PDFAnticancer Agents Med Chem
January 2025
Department of Medical Biochemistry, Faculty of Medicine, Gaziantep University, 27410, Gaziantep, Turkey.
Background: The lung cancer is the leading cause of death worldwide. Although methods such as surgery, chemotherapy, radiotherapy, and immunotherapy are used for treatment, these treatments are sometimes inadequate. In addition, the number of chemotherapeutic agents used is very limited, and it is very important to use new natural agents that can increase the effect of these methods used in treatment.
View Article and Find Full Text PDFJ Intensive Care
January 2025
Department of Anesthesiology, Critical Care, and Surgery, Duke University School of Medicine, Durham, NC, USA.
The incidence of heat-related illnesses and heatstroke continues to rise amidst global warming. Hyperthermia triggers inflammation, coagulation, and progressive multiorgan dysfunction, and, at levels above 40 °C, can even lead to cell death. Blood cells, particularly granulocytes and platelets, are highly sensitive to heat, which promotes proinflammatory and procoagulant changes.
View Article and Find Full Text PDFInflamm Res
January 2025
Department of Anesthesiology, Critical Care, and Surgery, Duke University School of Medicine, Durham, NC, USA.
Background: Mitochondria generate the adenosine triphosphate (ATP) necessary for eukaryotic cells, serving as their primary energy suppliers, and contribute to host defense by producing reactive oxygen species. In many critical illnesses, including sepsis, major trauma, and heatstroke, the vicious cycle between activated coagulation and inflammation results in tissue hypoxia-induced mitochondrial dysfunction, and impaired mitochondrial function contributes to thromboinflammation and cell death.
Methods: A computer-based online search was performed using the PubMed and Web of Science databases for published articles concerning sepsis, trauma, critical illnesses, cell death, mitochondria, inflammation, coagulopathy, and organ dysfunction.
CCN1 is a matricellular protein highly expressed in esophageal squamous cell carcinoma (ESCC) but hardly detectable in esophageal adenocarcinoma (EAC). Expression of CCN1 in EAC cells leads to TRAIL-mediated apoptosis. Unlike TRAIL, which primarily triggers cell death, APRIL and BAFF promote cell growth via NFκB signaling.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!