The ATP-dependent molecular chaperone Hsp90 (heat-shock protein 90) is essential for the maturation of hormone receptors and protein kinases. During the process of client protein activation, Hsp90 co-operates with cofactors/co-chaperones of unique sequence, e.g. Aha1 (activator of Hsp90 ATPase 1), p23 or p50, and with cofactors containing TPR (tetratricopeptide repeat) domains, e.g. Hop, immunophilins or cyclophilins. Although the binding sites for these different types of cofactors are distributed along the three domains of Hsp90, sterical overlap and competition for binding sites restrict the combinations of cofactors that can bind to Hsp90 at the same time. The recently discovered cofactor Aha1 associates with the middle domain of Hsp90, but its relationship to other cofactors of the molecular chaperone is poorly understood. Therefore we analysed whether complexes of Aha1, p23, p50, Hop and a cyclophilin with Hsp90 are disrupted by the other four cofactors by gel permeation chromatography using purified proteins. It turned out that Aha1 competes with the early cofactors Hop and p50, but can bind to Hsp90 in the presence of cyclophilins, suggesting that Aha1 acts as a late cofactor of Hsp90. In contrast with p50, which can bind to Hop, Aha1 does not interact directly with any of the other four cofactors. In vivo studies in yeast and in mammalian cells revealed that Aha1 is not specific for kinase activation, but also contributes to maturation of hormone receptors, proposing a general role for this cofactor in the activation of Hsp90-dependent client proteins.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1135010 | PMC |
http://dx.doi.org/10.1042/BJ20041283 | DOI Listing |
Cell Commun Signal
January 2025
Institute of Animal Reproduction and Food Research, Olsztyn, Poland.
Cryopreservation of bull sperm, crucial for breeding and assisted reproduction, often reduces sperm quality due to oxidative stress. This study examines how oxidative stress during cryopreservation affects peroxiredoxin 5 (PRDX5) and peroxiredoxin 6 (PRDX6) proteins, leading to their translocation and oligomerization in bull sperm. Increased reactive oxygen species (ROS) and nitric oxide (NO) levels were linked to reduced mitochondrial potential, higher DNA fragmentation, and increased membrane fluidity, prompting PRDX5 to move intracellularly and PRDX6 to the cell membrane.
View Article and Find Full Text PDFMol Biotechnol
January 2025
Amity Institute of Biotechnology, Amity University, Kolkata, India.
Nine homologous Cold Shock Proteins (Csps) have been recognized in the E.coli Cold Shock Domain gene family. These Csps function as RNA chaperones.
View Article and Find Full Text PDFFront Mol Neurosci
December 2024
Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN, United States.
The 90 kDa Heat shock protein (Hsp90) is a family of ubiquitously expressed molecular chaperones responsible for the stabilization and maturation of >400 client proteins. Hsp90 exhibits dramatic conformational changes to accomplish this, which are regulated by partner proteins termed co-chaperones. One of these co-chaperones is called the activator or Hsp90 ATPase activity homolog 1 (Aha1) and is the most potent accelerator of Hsp90 ATPase activity.
View Article and Find Full Text PDFArch Dermatol Res
January 2025
Department of Plastic and Burn Surgery, West China Hospital, Sichuan University, No. 37 Guoxue Alley, Wuhou District, Chengdu, 610041, Sichuan, China.
The stress response following burns may be a crucial factor in keloid formation, yet the underlying pathological mechanisms remain to be elucidated. This study initially investigated how heat shock factor 1 (HSF1) and heat shock proteins (HSPs) within the heat shock pathway influence keloid fibrosis, providing insights into the role of the heat shock response in keloid development. This study aims to further elucidate the role of the heat shock pathway in keloid fibrosis and investigate the specific function of HSF1 within this pathway.
View Article and Find Full Text PDFmBio
January 2025
Department of Infectious Diseases, Molecular Virology, Center for Integrative Infectious Disease Research, Medical Faculty Heidelberg, Heidelberg University, Heidelberg, Germany.
The unfolded protein response (UPR) is a cell-autonomous stress response aimed at restoring homeostasis due to the accumulation of misfolded proteins in the endoplasmic reticulum (ER). Viruses often hijack the host cell machinery, leading to an accumulation of misfolded proteins in the ER. The cell-autonomous UPR is the immediate response of an infected cell to this stress, aiming to restore normal function by halting protein translation, degrading misfolded proteins, and activating signaling pathways that increase the production of molecular chaperones.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!