Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Is it possible to learn the relation between 2 nonadjacent events? M. Pena, L. L. Bonatti, M. Nespor, and J. Mehler (2002) claimed this to be possible, but only in conditions suggesting the involvement of algebraic-like computations. The present article reports simulation studies and experimental data showing that the observations on which Pena et al. grounded their reasoning were flawed by deep methodological inadequacies. When the invalid data are set aside, the available evidence fits exactly with the predictions of a theory relying on ubiquitous associative mechanisms. Because nonadjacent dependencies are frequent in natural language, this reappraisal has far-reaching implications for the current debate on the need for rule-based computations in human adaptation to complex structures.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1037/0096-3445.133.4.573 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!