A method for multidirectional TEM observation of a specific site at atomic resolution.

J Electron Microsc (Tokyo)

Hitachi Science Systems, Ltd., Hitachinaka, Ibaraki 312-0057, Japan.

Published: March 2005

A new technique has been developed for the three-dimensional structure characterisation of a specific site at atomic resolution. In this technique, a focused ion beam (FIB) system is used to extract a specimen from a desired site as well as to fabricate the electron transparent specimen. A specimen holder with a specimen stage rotation mechanism has also been developed for use with both an FIB system and a high-resolution transmission electron microscope (TEM). The specimen holder allows both the FIB milling of a specimen and its observation in TEM without remounting the specimen from the specimen holder. A specimen for the three-dimensional TEM observation is extracted using the FIB micro-sampling technique and shaped into a pillar to mount on a tip of a needle stub enabling a multidirectional observation. The technique was applied to the multidirectional observation of the crystal structure of an Si single crystal at atomic resolution. The crystal lattice fringes of the two Si(111) planes with distances of 0.31 nm as well as the lattice fringes of the Si(200) with distances of 0.19 nm were clearly observed.

Download full-text PDF

Source
http://dx.doi.org/10.1093/jmicro/dfh089DOI Listing

Publication Analysis

Top Keywords

atomic resolution
12
specimen holder
12
specimen
9
tem observation
8
specific site
8
site atomic
8
resolution technique
8
fib system
8
specimen specimen
8
holder specimen
8

Similar Publications

Nanomaterials that engage in well-defined and tunable interactions with proteins are pivotal for the development of advanced applications. Achieving a precise molecular-level understanding of nano-bio interactions is essential for establishing these interactions. However, such an understanding remains challenging and elusive.

View Article and Find Full Text PDF

Mechanical bonds arise between molecules that contain interlocked subunits, such as one macrocycle threaded through another. Within polymers, these linkages will confer distinctive mechanical properties and other emergent behaviors, but polymerizations that form mechanical bonds efficiently and use simple monomeric building blocks are rare. In this work, we introduce a solid-state polymerization in which one monomer infiltrates crystals of another to form a macrocycle and mechanical bond at each repeat unit of a two-dimensional (2D) polymer.

View Article and Find Full Text PDF

Pt-based intermetallic alloy particles with a Pt skin layer have higher catalytic activity than solid-solution alloy particles and have attracted considerable attention for practical applications in polymer electrolyte fuel cells. However, the reason for the superior performance of intermetallic alloys is not yet fully understood. Because the catalytic reaction proceeds on the topmost surface of the particle, it is necessary to clarify the relationship between the periodic structure of the intermetallic alloy and the Pt atomic coordination on the surface.

View Article and Find Full Text PDF

Cancer cells produce extracellular vesicles (EVs) coated with an anionic sugar polymer, hyaluronan (HA), in the extracellular matrix. Hyaluronan is an established cancer biomarker in several cancer types. In this work, we thoroughly investigated the electrical properties of HA-coated EVs using advanced scanning probe microscopy (SPM) based nanoelectrical modes, which include EFM (electrostatic force microscopy), KPFM (Kelvin probe force microscopy), PFM (piezoresponse force microscopy) and C-AFM (conductive atomic force microscopy).

View Article and Find Full Text PDF

Rare Earth Selectivity and Electric Potentials at Mica Interfaces.

ACS Appl Mater Interfaces

January 2025

Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington 99352, United States.

Controlling materials' composition and structure to selectively adsorb rare earth elements (REE) is critical for better separations. Understanding how local electric potentials affect REE adsorption and how they can be modified via chemical substitution is of fundamental importance. We present calculated mean inner potentials for muscovite and phlogopite micas in excellent agreement with measured values of +10.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!