Ab initio computational study of the electronic structure and infrared spectra of donor-acceptor complexes formed between SO3 and CH3X (X = F, Cl, Br) molecules was carried out at the MP2(full)/6-31G(d) level of theory. The calculated complexation energy at G2MP2 level shows that stability of complexes decrease, as CH3Cl-SO3 > CH3Br-SO3 > CH3F-SO3. The NBO partitioning scheme show that the lengthening of the C-F, C-Cl, and C-Br bond lengths, upon complexation, is due to an decreasing "s" character in these bonds.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.saa.2004.04.011 | DOI Listing |
J Phys Chem A
January 2025
Department of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803, United States.
When dielectrics are hit with intense infrared (IR) laser pulses, transient metalization can occur. The initial attosecond dynamics behind this metallization are not entirely understood. Therefore, simulations are needed to understand this process and to help interpret experimental observations of it, such as with attosecond transient absorption (ATA).
View Article and Find Full Text PDFJ Phys Chem B
January 2025
Center for Ultrafast Science and Technology, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.
Fermi resonance is a common phenomenon, and a hidden caveat exists in the applications of infrared probes, causing spectral complication and shorter vibrational lifetime. In this work, using the cyanotryptophan (CNTrp) side chain model compound 5-cyanoindole (CN-5CNI), we performed Fourier transform infrared spectroscopy (FTIR) and two-dimensional infrared (2D-IR) spectroscopy on unlabeled CN-5CNI and its isotopically labeled substituents (CN-5CNI, CN-5CNI, CN-5CNI) and demonstrated the existence of Fermi resonance in 5CNI. By constructing the Hamiltonian and simulating 2D-IR spectra, we show that the distinct Fermi resonance 2D-IR patterns in various isotope substituents are determined by the quantum mixing consequences at the = 1 state, as well as the = 2 state, where the Fermi coupling and anharmonicity play a crucial role.
View Article and Find Full Text PDFJ Lasers Med Sci
December 2024
Laser Application in Medical Sciences Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
The treatment of chronic testicular pain is a complex condition that will be encountered by most practicing clinicians. In this study, the influence of low-level laser irradiation of the red and infrared spectral range for treating chronic testicular pain was evaluated and compared. In this double-blind, placebo-controlled randomized clinical trial study, 60 patients were randomly divided into three groups of 20: (1) low-level laser group with red (650 nm, 50 mW), (2) low-level laser group with infrared (820 nm, 100 mW) and (3) laser placebo group.
View Article and Find Full Text PDFResearch (Wash D C)
January 2024
School of Resources and Environment, Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 611731, China.
Solar-driven CO photoreduction holds promise for sustainable fuel and chemical productions, but the complex proton-coupled multi-electron transfer processes and sluggish oxidation half-reaction kinetics substantially hinder its efficiency. Here, we devised a rational catalyst design to address these challenges by fabricating ferrocene carboxylic acid-functionalized CsSbBr nanocrystals (CSB-Fc NCs), which facilitate simultaneous benzyl alcohol oxidation and CO reduction reactions under visible-light irradiation. The synchronized proton-coupled electron transfer processes between the reduction and oxidation half-reactions on CSB-Fc NCs resulted in a 5-fold increase in the CO reduction rate (45.
View Article and Find Full Text PDFSci Rep
January 2025
School of Electronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu, 611731, China.
In this study, we used desert soil from Gansu, China, as a sample to propose a method for designing hyperspectral stealth coatings against desert soil backgrounds within the spectral range of 400-2500 nm, and the corresponding coating was prepared. Firstly, the correlation between the composition and typical spectral detected characteristics of the desert soil was systematically analyzed. It was found that the color and the spectrum of the desert soil in the range of 400-1000 nm were influenced by different types of iron oxides.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!