Thrombin activates proteinase-activated receptor (PAR)1, PAR3 and PAR4 by a unique mechanism that involves cleavage of the receptor and exposure of a new N-terminal domain acting as a tethered ligand. Synthetic peptides based on the proteolytically revealed receptor sequence can selectively activate PAR1 or PAR4 independently of receptor cleavage. However, corresponding peptides for PAR3 have not been identified thus far. Here, we demonstrate that the synthetic peptide TFRGAP representing the 1st six residues of the new amino terminus of PAR3 induced ERK activation in human A-498 carcinoma cells endogeneously expressing PAR1 and PAR3. This effect was completely abolished by single alanine substitution at positions 3, 4 and 6 in the peptide. Since the specific PAR1 antagonist RWJ 56110 completely abolished TFRGAP-induced ERK activation in A-498 cells we speculate that TFRGAP does signal MAPK via interaction with PAR1. This was underlined by experiments on PAR1-/- mouse lung fibroblasts (KOLF cells) that stably overexpress human PAR1 and PAR3, respectively. While TFRGAP was without effect on ERK activation in PAR3+ KOLF cells, it induced MAPK activation in KOLF cells transfected with PAR1. These studies provide evidence that analogues of the PAR3 tethered ligand can mediate cell signaling by interaction with PAR1-type thrombin receptors.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.regpep.2004.07.032DOI Listing

Publication Analysis

Top Keywords

par1 par3
12
erk activation
12
kolf cells
12
peptide tfrgap
8
par1
8
tethered ligand
8
completely abolished
8
par3
7
cells
5
proteinase-activated receptors
4

Similar Publications

Article Synopsis
  • Macropinocytosis is a survival strategy used by cancer cells, especially in nutrient-poor environments, relying heavily on glutamine to sustain themselves, particularly in pancreatic ductal adenocarcinoma (PDAC) cells.
  • The atypical protein kinase C (aPKC) enzymes, specifically PKCζ and PKCι, play a crucial role in regulating macropinocytosis by interacting with scaffold proteins that influence cell structure and function.
  • The research shows that aPKCs enhance macropinocytosis through the relocation of Par3 to microtubules, and their depletion adversely affects cell viability, which can be reversed by restoring macropinocytosis, highlighting the significance of aPKCs in supporting
View Article and Find Full Text PDF

Integrative phosphoproteomic analyses reveal hemostatic-endothelial signaling interplay.

J Thromb Haemost

October 2024

Department of Molecular Hematology, Sanquin Research, Amsterdam, The Netherlands. Electronic address:

Background: The vascular endothelial cell (EC) monolayer plays a crucial part in maintaining hemostasis. An extensive array of G protein-coupled receptors allows ECs to dynamically act on key hemostatic stimuli such as thrombin and histamine. The impact of these individual stimuli on EC signal transduction has been the subject of various studies, but insight into discordant and concordant EC signaling between different G protein-coupled receptors remains limited.

View Article and Find Full Text PDF

Aim: Molecular alterations of diabetic gastroenteropathy are poorly identified. This study investigates the effects of prolonged GABA supplementation on key protein expression levels of trypsin-1, PAR-1, PAR-2, PAR-3, PI3K, Akt, COX-2, GABAA, and GABAB receptors in the gastric tissue of type 2 diabetic rats (T2DM).

Method: To induce T2DM, a 3-month high-fat diet and 35 mg/kg of streptozotocin was used.

View Article and Find Full Text PDF

Background: Activated protein C (APC) has anticoagulant and cytoprotective cell-signaling activities, which often require protease-activated receptor (PAR) 1 and PAR3 and PAR cleavages at noncanonical sites (R46-N47 and R41-G42, respectively). Some PAR1-derived (P1) peptides and PAR3-derived (P3) peptides, eg, P1-47-66 and P3-42-65, mimic APC's cell signaling. In anti-inflammatory assays, these 2 peptides at low concentrations synergistically attenuate cellular inflammation.

View Article and Find Full Text PDF
Article Synopsis
  • Macropinocytosis is a survival mechanism for cancer cells, especially in nutrient-poor environments like tumors, allowing them to scavenge nutrients such as glutamine.
  • In pancreatic ductal adenocarcinoma (PDAC), the atypical protein kinase C (aPKC) enzymes, specifically PKCζ and PKCι, play a crucial role in regulating this nutrient uptake process.
  • The study reveals that these aPKCs interact with cell polarity proteins and are influenced by EGFR signaling and the CREM transcription factor to facilitate macropinocytosis, which is essential for the growth and survival of PDAC cells in vivo.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!